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Abstract

We define an arbitration problem as the triplet of a bargaining set and the offers submitted by
two players. We characterize the solution to a class of arbitration problems using the axiomatic ap-
proach. The axioms we impose on the arbitration solution are “Symmetry in Offers,” ”Invariance”
and ”Pareto Optimality.” The key axiom, ”Symmetry in Offers,” requires that whenever players’
offers are symmetric, the arbitrated outcome should also be symmetric. We find that there exists
a unique arbitration solution, called the symmetric arbitration solution, that satisfies all three ax-
ioms. We then analyze a simultaneous-offer game and an alternating-offer game. In both games,
the symmetric arbitration solution is used to decide the outcome whenever players cannot reach
agreement by themselves. We find that in both games, if the discount factor of players is close to
1, then the unique subgame perfect equilibrium outcome coincides with the Kalai-Smorodinsky
solution outcome.
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1 Introduction

Arbitration occurs when two players are unable to reach agreement with each
other. In this paper, we formally define the arbitration problem as the triplet
that consists of offers submitted by two players and their bargaining set. An
arbitration solution outcome is a point in the bargaining set chosen by an
arbitrator. In order to obtain the arbitration outcome, the arbitrator usually
follows a certain arbitration procedure. In the literature, there are two well-
know arbitration procedures. One is the rule of equally-split-the-difference
between players’ offers, and the other is the final-offer arbitration rule.1

In this paper, we will use the axiomatic approach (Nash, 1950; Kalai and
Smorodinsky, 1975) to characterize the arbitration procedure. An advantage
of the axiomatic approach is that, we don’t need to characterize the detailed
arbitration process. Instead, we propose several axioms that an arbitration
procedure should satisfy and then find the arbitration solution that satisfies
those axioms.

The key axiom we impose on the arbitration procedure is “Symmetry in
Offers,” which requires fairness in arbitration. More particularly, it requires
that whenever the two players’ offers are symmetric with each other, the ar-
bitrated outcome should also be symmetric. “Symmetry in Offers” appears
to be a strong rule in the sense that it does not require symmetry in the bar-
gaining set. However, “Symmetry in Offers” is a natural rule given that the
arbitrator should make a decision primarily based on players’ offers, instead of
the shape of the bargaining set. In addition, it is a simple rule because it does
not require the arbitrator to calculate the entire shape of the bargaining set.
The other two axioms, “Invariance w.r.t. Affine Transformation” and “Pareto
Optimality” are self-evident. They require invariance and efficiency in arbi-
tration respectively. We find that there is a unique arbitration solution that
satisfies all the three axioms. We call this solution the symmetric arbitration
solution. The symmetric arbitration solution has a simple graphical represen-
tation: for any given bargaining set and offers submitted by the two players,
the symmetric arbitration solution outcome is the intersection point of the
Pareto frontier of the bargaining set with the line joining the component-wise
minimum and component-wise maximum of the offers. When the Pareto fron-
tier of the bargaining set is linear, the symmetric arbitration solution coincides

1Final offer arbitration is a procedure in which the arbitrator must choose one of the
players’ offers as the arbitration outcome (Stevens, 1966).
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with the rule of “equally splitting the difference.” The symmetric arbitration
solution solution is “superior” to the rule of “equally splitting the difference”
in that when the Pareto frontier of the bargaining set is nonlinear, “equally
splitting the difference” results in an inefficient outcome, while the symmetric
arbitration solution results in an efficient outcome.

Although our focus is to use “Symmetry in Offers” to characterize the
symmetric arbitration solution, it is possible for us to use a weaker version of
“Symmetry in Offers” to characterize the symmetric arbitration solution. The
weaker version of “Symmetry in Offers,” called “Weak Symmetry in Offers,”
requires that the arbitration solution outcome be symmetric whenever play-
ers’ offers are symmetric and the bargaining set is symmetric. We show that
the symmetric arbitration solution is the only solution that satisfies “Weak
Symmetry in Offers,” “Invariance,” “Pareto Optimality,” and “Strong Mono-
tonicity.”

We then propose two bargaining games in which, whenever the players
are unable to reach agreement, an arbitration stage is reached and the sym-
metric arbitration solution is used to decide the outcome. The first game is a
simultaneous-offer game. In this game, two players make offers simultaneously.
If the offers are compatible, then each player gets what he demands, otherwise
the game moves to the arbitration stage. In the arbitration stage, the sym-
metric arbitration solution is utilized to determine the outcome. This game is
similar to the second Nash demand game in Anbarci and Boyd (2011)2. Both
games are variants of the Nash demand game (Nash, 1953) and have arbitra-
tion stages. The difference is that the game in Anbarci and Boyd (2011) uses
the rule of “equally splitting the difference” at the arbitration stage, but our
game uses the symmetric arbitration solution.

Our second game is an alternating-offer game. In this game, at stage 1,
player 1 makes an offer and player 2 decides whether to accept or reject it. If
player 2 chooses to reject the offer, then the game moves to the next stage,
at which player 2 makes an offer and player 1 decides whether to accept or
reject it. If player 1 rejects the offer, then the game moves to the arbitration
stage in which the symmetric arbitration solution is used to decide the final
outcome. This game can be regarded as a variant of the game proposed by

2The game considered in Anbarci and Boyd (2011) can be rephrased as follows. At the
first stage, two players make offers simultaneously. If the offers are compatible, then each
player gets what he demands, otherwise with probability 1−p the game terminates with the
disagreement point as the outcome, and with probability p the game goes to the arbitration
stage in which the rule of “equally splitting the difference” is used to decide the outcome.
Note that the probability p of moving to the arbitration stage in their game is equivalent
to the discount factor δ in our game when the disagreement point is normalized to (0, 0).
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Yildiz (2011) and the game studied by Rong (2012). In all of those games, two
players make offers sequentially and if both offers are rejected, the game moves
to an arbitration stage. Our game differs from Yildiz (2011) and Rong (2012)
in that our game uses the symmetric arbitration solution at the arbitration
stage, while both the game in Yildiz (2011) and the game in Rong (2012) use
final offer arbitration.

In both the simultaneous-offer game and the alternating-offer game that
we consider, the only arbitration cost is the time cost, which is measured by
the common discount factor of players. Our equilibrium analyses show that, in
both games, when the discount factor is close to 1 (i.e., the time cost is low),
players tend to make extreme offers. The threshold discount factor required
for players to make extreme offers is relatively small. In particular, when the
Pareto frontier is linear, the threshold discount factor is 2

3
for the simultaneous-

offer game and is 0.91 for the alternating-offer game. In addition, we find that,
when both players make extreme offers, the arbitrated outcome coincides with
the Kalai-Smorodinsky solution outcome.

The result that as the discount factor becomes close to 1, the only equi-
librium requires each player to make the extreme offer is not surprising. Ac-
tually, it is well known in the literature that if a bargaining process involves
an arbitration mechanism which allows for compromise between offers, then
the bargaining process is subject to the so-called chilling effect (Feuille, 1975;
Deck and Farmer, 2007). That is, players tend to take extreme positions before
arbitration. This tendency is stronger when players become more patient.

This paper is organized as follows. The next section is the axiomatic char-
acterization of the arbitration problem. Section 3 presents the main result.
Section 4 provides an alternative axiomatic characterization of the symmetric
arbitration solution using the axiom of Weak Symmetry in Offers. Section
5 discusses the two bargaining games with symmetric arbitration, i.e., the
“simultaneous-offer game with symmetric arbitration” and the “alternating-
offer game with symmetric arbitration.” Concluding remarks are offered in
section 6.

2 Axiomatic Characterization of Arbitration

Problem

Suppose there are two players who are expected utility maximizers. Let S ⊂
R2 denote the bargaining set, which includes all possible bargaining outcomes,
measured in expected utility level. Let (x1, y1) ∈ S denote player 1’s final
offer submitted to an arbitrator and (x2, y2) ∈ S denote player 2’s final offer
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submitted to the arbitrator. Note we always use x to represent player 1’s
payoff and y to represent player 2’s payoff.

We assume the bargaining set S is nonempty, convex, compact and strictly
comprehensive. The definitions of “comprehensiveness” and “strict compre-
hensiveness” are given below:

Definition 1. S is comprehensive if ∃(d1, d2) ∈ R2 s.t. ∀(x, y) ∈ S, we have
(i) (x, y) ≥ (d1, d2), and (ii) if (d1, d2) ≤ (x′, y′) ≤ (x, y), then (x′, y′) ∈ S.

Definition 2. S is strictly comprehensive if S is comprehensive and for
any (x, y) ∈ S and (x′, y′) ∈ S with (x′, y′) ≥ (x, y) and (x′, y′) 6= (x, y), there
exists a (x′′, y′′) ∈ S such that (x′′, y′′) >> (x, y).

If we regard d as the disagreement point, then the “comprehensiveness” of
a bargaining set simply requires: (i) for each player, the utility level at the
disagreement point is the lowest possible utility level that he can get from
bargaining; (ii) each player can freely dispose any utility that is higher than
the disagreement point.

Strict comprehensiveness further requires the Pareto frontier of the bar-
gaining set be strictly downward-sloping. We need a bargaining set to be
strictly comprehensive to avoid the case that the Pareto frontier contains a
flat or vertical segment. A typical strictly comprehensive bargaining set S is
shown in Figure 1.

S

2U

2 2( , )x y

1 1( , )x y

1 2( , )b d1 2( , )d d

( )y f x=
1 2( , )d b

S

( , )

1U

Figure 1: Bargaining set and players’ offers.

Any nonempty bargaining set S that is convex, compact and strictly com-
prehensive determines a unique d = (d1, d2) that satisfies Definition 1. We use
d(S) to denote this point.
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The Pareto frontier of the bargaining set S is defined as PF (S) = {p ∈ S :
q ≥ p with q 6= p ⇒ q /∈ S}. We assume that each player can only make an
offer on the Pareto frontier. This assumption is made for simplicity, although
it is not essential for our main results.

Define bi = max{Ui : (U1, U2) ∈ S} as player i’s maximal possible utility
level from the bargaining set. Define the function f : x→ max{y|(x, y) ∈ S}
for x ∈ [d1, b1]. Thus {(x, f(x))|x ∈ [d1, b1]} denotes the Pareto frontier. Our
assumption that S is convex, compact and strictly comprehensive implies that
f is a strictly decreasing function on [d1, b1] with f(d1) = b2 and f(b1) = d2.

Now define Σ = {S ⊂ R2 |S is nonempty, convex, compact, strictly
comprehensive} and B = {((x1, y1), (x2, y2), S) |(x1, y1) ∈ PF (S) , (x2, y2) ∈
PF (S), (x1, y2) /∈ S and S ∈ Σ}. We call any ((x1, y1), (x2, y2), S) ∈ B an
arbitration problem.3 An arbitration solution is any function g : B → R2

such that g((x1, y1), (x2, y2), S) ∈ S. We may write g((x1, y1), (x2, y2), S) =
(g1((x1, y1), (x2, y2), S), g2((x1, y1), (x2, y2), S)), where gi((x1, y1), (x2, y2), S) is
the arbitration outcome for player i.

We will propose the following three axioms that an arbitration solution
should satisfy:

Definition 3. An arbitration solution g is a symmetric arbitration solu-
tion if it satisfies the following three axioms:

1. Axiom 1 (Symmetry in Offers): For any arbitration problem
((x1, y1), (x2, y2), S) ∈ B with x1 = y2 and x2 = y1, we have
g1((x1, y1), (x2, y2), S) = g2((x1, y1), (x2, y2), S).

2. Axiom 2 (Invariance w.r.t. Affine Transformation): If A : R2 → R2

represents a strictly increasing affine transformation, i.e., A(x, y) =
(a1x + c1, a2y + c2) for some positive constant ai and some constant
ci, then we have g(A(x1, y1), A(x2, y2), A(S)) = A(g((x1, y1), (x2, y2), S))
for any ((x1, y1), (x2, y2), S) ∈ B.

3. Axiom 3 (Pareto Optimality): For any arbitration problem
((x1, y1), (x2, y2), S) ∈ B, we have g((x1, y1), (x2, y2), S) ∈ PF (S).

Axiom 1 requires that if the offers from the two players are symmetric
around the 45 degree line, then the arbitration solution outcome should also

3Notice that the arbitration problem we consider involves incompatible offers (i.e.,
(x1, y2) /∈ S). If players’ offers are compatible, then each player simply gets what he de-
mands (and arbitration is not necessary). In addition, notice that our arbitration problem
consists of two players’ offers and a bargaining set, while the classic bargaining problem
proposed by Nash (1950) consists of a disagreement point and a bargaining set.
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be symmetric (i.e., on the 45 degree line). That is, if each player makes the
same demand for himself and suggests the same payoff for his opponent, then
the arbitrated outcome should result in the same payoff for each player. Axiom
1 does not require symmetry in the bargaining set. However, we still regard
Axiom 1 as a natural rule for the following reasons. First, an arbitrator should
primarily focus on the offers of players, instead of the shape of the bargaining
set. Second, it is generally costly for the arbitrator to calculate the entire
shape of the bargaining set. Axiom 1 (together with Axiom 2 and Axiom 3)
only requires that the arbitrator calculate a fraction of the bargaining set in
order to determine the arbitration outcome on the Pareto frontier.4

Axiom 2 is adapted from Nash (1950). The idea behind this axiom is
that the arbitration outcome should only depend on players’ underlying pref-
erences and not on their utility representations. Hence, for two arbitration
problems with the same preferences and the same physical offers submitted
by the players, the arbitration outcome should also be the same (with cor-
respondingly different utility representation). Note that players’ utilities are
expected utilities, so a player’s utility is unique up to strictly increasing affine
transformation. Finally, Axiom 3 simply requires the arbitration outcome to
be efficient.

3 Main Result

It turns out the symmetric arbitration solution is unique and has a simple
representation. For p1, p2 ∈ R2, let L(p1, p2) denote the line joining p1 and p2.
We have the following result:

Theorem 1. There is one and only one symmetric arbitration solution, de-
noted by γ. The function γ has the following simple graphic representation.
For any arbitration problem ((x1, y1), (x1, y2), S) ∈ B, γ((x1, y1), (x2, y2), S) is
the intersection point of L((x1, y1)∧(x2, y2), (x1, y1)∨(x2, y2)) with PF (S) (see
Figure 2).

Proof: For a given arbitration problem ((x1, y1), (x2, y2), S) ∈ B, we have
two cases:

(i) y2 > x2.
We need to find a strictly increasing affine transformation that trans-

forms the given problem ((x1, y1), (x2, y2), S) to an offer-symmetric prob-

4I am indebted to Ichiro Obara and an anonymous referee for suggesting the above
explanations for the axiom of Symmetry in Offers.
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S
1U

2 2( , )x y

1 1( , )x y

2U
1 1 2 2(( , ), ( , ), )x y x y Sγ

1 1 2 2( , ) ( , )x y x y∨

1 2( , )d d

1 1 2 2( , ) ( , )x y x y∧

S
( , )

( , )

2

Figure 2: Symmetric arbitration solution.

lem ((x′1, y
′
1), (x2, y2), S

′), where x′1 = y2 and y′1 = x2 (see Figure 3). Let
A∗i (x) = a∗ix+ c∗i (i = 1, 2) be such a transformation. Then we have:

′S

1U

2 2( , )x y
2U

Transformed Problem 

�45  

1 1 2 2(( , ), ( , ), )x y x y Sγ ′ ′ ′

1 1( , )x y′ ′

S
1U

1 1( , )x y

2U
1 1 2 2(( , ), ( , ), )x y x y Sγ

Original Problem 

1 1 2 2( , ) ( , )x y x y∨
2 2( , )x y

1 1 2 2( , ) ( , )x y x y∧

Figure 3: Transformation of the arbitration problem.

{
x2 = a∗1x2 + c∗1
y2 = a∗2y2 + c∗2

and

{
y2 = a∗1x1 + c∗1
x2 = a∗2y1 + c∗2

. (1)

Solving the equations, we have:
a∗1 =

y2 − x2
x1 − x2

a∗2 =
x2 − y2
y1 − y2

and


c∗1 =

x2(x1 − y2)
x1 − x2

c∗2 =
y2(y1 − x2)
y1 − y2

. (2)
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Since (x1, y1) ∈ PF (S), (x2, y2) ∈ PF (S), (x1, y2) /∈ S and the Pareto
frontier is strictly downward-sloping, we must have x1 > x2 and y1 < y2.
Note we have also assumed that y2 > x2. It can be verified that a∗1 > 0
and a∗2 > 0, which ensures that the above affine transformation is indeed an
expected utility transformation.

If (u∗1, u
∗
2) is the symmetric arbitration solution to the original arbitration

problem ((x1, y1), (x2, y2), S), then by Axiom 2, (a∗1u
∗
1+c∗1, a

∗
2u
∗
2+c∗2) is the sym-

metric arbitration solution to the transformed problem ((x′1, y
′
1), (x2, y2), S

′).
Since ((x′1, y

′
1), (x2, y2), S

′) is symmetric in offers, the symmetric arbitration
solution to it must be on the 45 degree line. Hence, we have:

a∗1u
∗
1 + c∗1 = a∗2u

∗
2 + c∗2. (3)

Using equations 2, equation 3 can be rewritten as:

u∗2 =
y2 − y1
x1 − x2

u∗1 +
x1y1 − x2y2
x1 − x2

. (4)

It can be verified that the line

u2 =
y2 − y1
x1 − x2

u1 +
x1y1 − x2y2
x1 − x2

is the line that passes through (x1, y1) ∧ (x2, y2) and (x1, y1) ∨ (x2, y2). Now,
by Axiom 3 (Pareto Optimality), we can conclude that (u∗1, u

∗
2) must be the

intersection point of L((x1, y1) ∧ (x2, y2), (x1, y1) ∨ (x2, y2)) with the Pareto
frontier.

(ii) y2 ≤ x2. We can always find a strictly increasing affine transformation
such that the transformed arbitration problem has the property y′2 > x′2. Then
we go back to case (i) and the remaining proof is straightforward. �

A graphic representation of the symmetric arbitration solution is shown in
Figure 2.

The idea of the proof is that, for any offer-nonsymmetric arbitration prob-
lem ((x1, y1), (x2, y2), S), we can always find a strictly increasing affine trans-
formation to transform it to an offer-symmetric problem ((x′1, y

′
1), (x2, y2), S

′),
where x′1 = y2 and y′1 = x2 (see Figure 3). Due to the axiom of Pareto optimal-
ity and the axiom of Symmetry in Offers, the symmetric arbitration solution
to the problem ((x′1, y

′
1), (x2, y2), S

′) must be the intersection point of the 45
degree line with the Pareto frontier. Then, using the inverse of the above affine
transformation, we can transform this solution outcome back to the original
problem. It can be verified that the solution to the original problem is exactly

8
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the intersection point of L((x1, y1) ∧ (x2, y2), (x1, y1) ∨ (x2, y2)) with PF (S).

S
1U

2 2( , )x y

1 1( , )x y

2U
1 1 2 2(( , ), ( , ), )x y x y Sγ

1 2( , )d d

αα
m

Figure 4: Another representation of the symmetric arbitration solution.

Another graphic interpretation of the solution is as follows. For the arbitra-
tion problem ((x1, y1), (x2, y2), S), connect the two offers (x1, y1) and (x2, y2)
with a line and denote its middle point by m. Now, draw a line through m
with a slope that is the negative of the slope of L((x1, y1), (x2, y2)). Then, the
intersection point of this new line with the Pareto frontier is the symmetric
arbitration solution (see Figure 4). The essential point here is that the line
joining m and the solution point γ((x1, y1), (x2, y2), S) always has a slope that
is the negative of the slope of the line joining (x1, y1) and (x2, y2). Note this
is true for any offer-symmetric arbitration problem because of the axiom of
Symmetry in Offers. This is also true for any offer-nonsymmetric arbitration
problem, because (i) any offer-nonsymmetric problem can be transformed to
an offer-symmetric problem by some strictly increasing affine transformation,
and (ii) two lines with slopes that are opposite in sign is a property preserved
by any affine transformation.5

When the Pareto frontier of the bargaining set is linear, the symmetric
arbitration solution outcome coincides with the outcome of “equally splitting
the difference.” When the Pareto frontier of the bargaining set is nonlinear,
“equally splitting the difference” results in an inefficient outcome (point m
in Figure 4), while the symmetric arbitration solution results in an efficient
outcome.

5See Nash (1953) for a similar geometric explanation for the Nash bargaining solution.
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4 Another Axiomatic Characterization of

Symmetric Arbitration Solution6

In this section, we propose a weaker version of the axiom of Symmetry in Of-
fers, called Weak Symmetry in Offers. It requires that the arbitration solution
outcome be symmetric whenever players’ offers are symmetric and the bargain-
ing set is symmetric. It turns out that the symmetric arbitration solution is
the unique arbitration solution that satisfies the following four axioms: Weak
Symmetry in Offers, Invariance, Pareto Optimality, and Strong Monotonicity.

Definition 4. Let g be an arbitration solution. The axiom of Weak Symmetry
in Offers and the axiom of Strong Monotonicity are defined as follows:

1. Axiom 1′ (Weak Symmetry in Offers): For any arbitration problem
((x1, y1), (x2, y2), S) ∈ B where x1 = y2, x2 = y1 and S is symmetric, we
have g1((x1, y1), (x2, y2), S) = g2((x1, y1), (x2, y2), S).

2. Axiom 4 (Strong Monotonicity): For any two arbitration prob-
lems ((x1, y1), (x2, y2), S) ∈ B and ((x1, y1), (x2, y2), S

′) ∈ B, if
S ′ ⊃ S, then g1(((x1, y1), (x2, y2), S

′)) ≥ g1(((x1, y1), (x2, y2), S)) and
g2(((x1, y1), (x2, y2), S

′)) ≥ g2(((x1, y1), (x2, y2), S)).

Theorem 2. The symmetric arbitration solution γ is the unique arbitration
solution that satisfies Axiom 1′, Axiom 2, Axiom 3, and Axiom 4.

Proof: It is easy to verify that the symmetric arbitration solution γ satisfies
Axiom 1′, Axiom 2, Axiom 3, and Axiom 4. Now, assume that there is another
arbitration solution µ that satisfies all the four axioms. We will show that
µ((x1, y1), (x2, y2), S) = γ((x1, y1), (x2, y2), S) for any ((x1, y1), (x2, y2), S) ∈ B.

It is without loss of generality to assume that y2 > x2.
7 Similar to part

(i) of proof of Theorem 1, we can find a strictly increasing affine transforma-
tion (A∗1, A

∗
2) such that ((x1, y1), (x2, y2), S) can be transformed to an offer-

symmetric arbitration problem ((x′1, y
′
1), (x2, y2), S

′), where x′1 = y2 and y′1 =
x2. Figure 5 illustrates the transformed arbitration problem. Let S ′′ = convex
hull {(x′1, y′1), (x2, y2), (x2, y′1), γ((x′1, y

′
1), (x2, y2), S

′)}. Since S ′′ is symmetric,
by Axiom 1′, µ((x′1, y

′
1), (x2, y2), S

′′) = γ((x′1, y
′
1), (x2, y2), S

′). Since S ′ ⊃ S ′′,

6I am indebted to an anonymous referee who suggested that I use a weaker symmetry
axiom and some type of monotonicity axiom to characterize the symmetric arbitration
solution.

7If y2 ≤ x2, then we can always transform the arbitration problem to a new problem,
which has the property y′2 > x′2.
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Figure 5: Transformed arbitration problem.

by Axiom 4, we must have µ((x′1, y
′
1), (x2, y2), S

′) = µ((x′1, y
′
1), (x2, y2), S

′′), so,
µ((x′1, y

′
1), (x2, y2), S

′) = γ((x′1, y
′
1), (x2, y2), S

′). Now, we can use the inverse
of the transformation (A∗1, A

∗
2) to transform the solution µ((x′1, y

′
1), (x2, y2), S

′)
back to the original problem, and we must have µ((x1, y1), (x2, y2), S) =
γ((x1, y1), (x2, y2), S). �

5 Bargaining Games with Symmetric Arbitra-

tion

This section will analyze two bargaining games that involve symmetric arbitra-
tion. One is the simultaneous-offer game, and the other is the alternating-offer
game.

From this point on, we fix the bargaining set S and we will simply write
γ((x1, y1), (x2, y2), S) as γ((x1, y1), (x2, y2)) whenever there is no confusion. We
use δ ∈ (0, 1] to denote the discount factor, which means 1 unit of utility at
the next stage is equivalent to δ unit of utility at the current stage. Finally,
we assume throughout this section that d(S) = (0, 0).

The following lemma states that a player’s payoff obtained from the sym-
metric arbitration solution is strictly increasing in both his own demand and
his opponent’s suggested payoff for him. This implies that, if a player takes a
stronger position (i.e., demand more) before arbitration, then he will get more
payoff from arbitration.8

8This is true for any arbitration procedure that allows for compromises between offers.
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Lemma 1. For x1, x2 ∈ [0, b1], γ1((x1, f(x1)), (x2, f(x2))) is strictly increasing
in x1 and x2; γ2((x1, f(x1)), (x2, f(x2))) is strictly decreasing in x1 and x2.

Proof: see the appendix. �

5.1 Simultaneous-Offer Game

Simultaneous-offer game is also known as the Nash demand game. In the
original Nash demand game (Nash 1953), two players make demands (offers)
simultaneously. If their demands are compatible, then each player gets what
he demands; otherwise, each player gets the disagreement payoff. One disad-
vantage of the Nash demand game is that it is a one-stage game that does
not allow for renegotiation or arbitration. In the literature, many variants of
the Nash demand game have been proposed to deal with this problem (e.g.,
Howard, 1992; Anbarci and Boyd, 2011).9 Here, we are going to propose a
new Nash demand game, in which players move to an arbitration stage when-
ever their offers are incompatible. In addition, we assume that the symmetric
arbitration solution is used at the arbitration stage. In particular, we define
the simultaneous-offer game (Nash demand game) with symmetric arbitration
as follows:

1. Stage 1: player 1 and player 2 submit their offers simultaneously. Let
(x1, y1) ∈ PF (S) be the offer submitted by player 1 and (x2, y2) ∈ PF (S)
be the offer submitted by player 2. If (x1, y1) and (x2, y2) are compatible,
then (x1, y2) is the outcome. Otherwise, the game moves to Stage 2.

2. Stage 2: an arbitrator decides the outcome using the symmetric arbitra-
tion solution, i.e., γ((x1, y1), (x2, y2)) is the arbitrated outcome.

Notice that players’ payoffs obtained at stage 2 are discounted by δ. So, if
the game moves to arbitration, the arbitrated payoffs received by players are
δγ((x1, y1), (x2, y2)). Before characterizing the equilibria in this game, we will
make the following definition (refer to Figure 6).

Definition 5. For any (x, y) ∈ PF (S), define x̃(x) = γ1((b1, 0), (x, f(x))) and
ỹ(y) = γ2((f

−1(y), y), (0, b2)).

9Howard (1992) extended the original Nash demand game to a multi-stage game which
allows for “renegotiation”. In Anbarci and Boyd (2011), their second Nash demand game
introduced an arbitration stage, in which the rule of “equally splitting the difference” is
utilized to decide the arbitration outcome.
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Figure 6: Definition of x̃(x) and ỹ(y).

x̃(x) is player 1’s stage-2 payoff when his opponent’s makes the offer (x, y) ∈
PF (S) while he makes the extreme offer (b1, 0). On the other hand, ỹ(y) is
player 2’s stage-2 payoff when his opponent makes the offer (x, y) ∈ PF (S)
while he makes the extreme offer (0, b2). According to Lemma 1, a player’s
arbitrated payoff is strictly increasing in his own demand. Thus, x̃(x) is player
1’s best possible (stage-2) arbitrated payoff when his opponent makes the offer
(x, y). Similarly, ỹ(y) is player 2’s best possible (stage-2) arbitrated payoff
when his opponent makes the offer (x, y).

We will use ((x1, y1), (x2, y2)) to denote the strategy profile in which player
1 submits the offer (x1, y1) and player 2 submits the offer (x2, y2). If a player
makes the offer (x, y), then the other player can choose to make the same offer
(x, y) and obtain x (if he is player 1) or y (if he is player 2), or choose to make
the extreme offer (which will move the game to arbitration) and obtain x̃(x)
(if he is player 1) or ỹ(y) (if he is player 2) at the arbitration stage. Thus,
((x, y), (x, y)) is a Nash equilibrium if and only if x ≥ δx̃(x) and y ≥ δỹ(y). In
addition, ((b1, 0), (0, b2)) is always a Nash equilibrium regardless of how high
the discount factor might be.

The following theorem summarizes the results above. It actually describes
all the possible Nash equilibria in the simultaneous-offer game with symmetric
arbitration.

Theorem 3. In the simultaneous-offer game with symmetric arbitration, there
are two possible types of Nash equilibria:

(i) (immediate-agreement equilibrium) ((x, y), (x, y)) ((x, y) ∈ PF (S)) is a
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Nash equilibrium if and only if x ≥ δx̃(x) and y ≥ δỹ(y);

(ii) (arbitration equilibrium) ((b1, 0), (0, b2)) is a Nash equilibrium for any δ ∈
(0, 1].

Proof: see the appendix. �

As will be illustrated in the following example, both types of Nash equilibria
described in Theorem 3 appear as the discount factor changes from 0 to 1.
Moreover, for some range of discount factors, the Nash equilibrium is not
unique.

Example 1. Assume that b1 = b2 = 1 and f(x) = 1 − x2 for x ∈ [0, 1]. As-
sume that the bargaining game is the simultaneous-offer game with symmetric
arbitration.

Analysis of the example: Table 1 lists the equilibrium type of the game and
Figure 7 depicts the equilibrium payoff(s) of player 1. When 0 < δ ≤ 0.741,
there exist multiple Nash equilibria which include both the equilibrium with
immediate agreement and the equilibrium with arbitration. Notice that al-
though the equilibrium with arbitration is unique, the equilibrium with im-
mediate agreement is not unique (except at δ = 0.741). The range of player
1’s payoffs obtained from equilibria with immediate agreement expands as the
discount factor becomes small. As δ approaches zero, this range approaches
[0, 1], which means that any point on the Pareto frontier can be supported as
the payoff of an immediate-agreement equilibrium.

�
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Table 1: Nash equilibrium of the game in Example 1.

When 0.741 < δ ≤ 1, the unique Nash equilibrium is an equilibrium with
arbitration. Notice that as δ approaches 1, the equilibrium payoff of player
1 converges to the payoff that he would receive from the Kalai-Smorodinsky
(KS) solution outcome (we will further illustrate this point in Theorem 4). �

In Example 1, when the discount factor is large, the unique Nash equi-
librium is an equilibrium with arbitration; when the discount factor is small,
then besides the equilibrium with arbitration, the equilibrium with immediate
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Figure 7: Equilibrium payoff(s) of player 1.

agreement also appears. These two results turn out to be general properties
that are true for any bargaining set S ∈ B. The next theorem (Theorem 4)
summarizes these results.

Define x∗(δ) as the unique x ∈ [0, b1] that satisfies δx̃(x) = x, and y∗(δ) as
the unique y ∈ [0, b2] that satisfies δỹ(y) = y. We have:

Theorem 4. In the simultaneous-offer game with symmetric arbitration, there
exists a δ̂ ∈ (0, 1), such that (i) if δ ∈ (0, δ̂], then for any x ∈ [x∗(δ), f−1(y∗(δ))]
(which is nonempty), ((x, f(x)), (x, f(x))) is a Nash equilibrium;10 and (ii) if
δ ∈ (δ̂, 1], then ((b1, 0), (0, b2)) is the only Nash equilibrium, and the stage
2 arbitrated outcome for the equilibrium ((b1, 0), (0, b2)), γ((b1, 0), (0, b2)), co-
incides with the Kalai-Smorodinsky solution outcome of the Nash bargaining
problem ((0, 0), S).

Proof: see the appendix. �

According to Theorem 3 (ii), when the discount factor becomes close to 1,
the unique equilibrium outcome of the simultaneous-offer game with symmetric
arbitration coincides with the Kalai-Smorodinsky solution outcome of the Nash
bargaining problem ((0, 0), S). To see this, notice that the Kalai-Smorodinsky
solution to the Nash bargaining problem ((0, 0), S) is the intersection point of
L((0, 0), (b1, b2)) and the Pareto frontier (Kalai and Smorodinsky, 1975). The

10In addition, notice that ((b1, 0), (0, b2)) is always a Nash equilibrium.
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Figure 8: Equilibrium outcome when δ is close to 1.

unique equilibrium outcome of our simultaneous-offer game when the discount
factor is close to 1 is γ((b1, 0), (0, b2)). Refer to Figure 8. It is obvious that
γ((b1, 0), (0, b2)) = KS((0, 0), S).

The key axiom that leads to the symmetric arbitration solution is the axiom
of Symmetry in Offers and the key axiom that leads to the Kalai-Smorodinsky
solution is the axiom of Individual Monotonicity.11 Those two axioms have
totally different meanings and it is surprising that if we introduce arbitration
in the simultaneous-offer game and require the arbitrator to obey the axiom of
Symmetry in Offers (and the other two axioms), then the equilibrium outcome
of the simultaneous-offer game will be the same as the Kalai-Smorodinsky
solution outcome (as soon as δ is close to 1).

Corollary 3 of Anbarci and Boyd (2011) shows that when the continuation
probability is small, the Kalai-Smorodinsky solution outcome must be one of
the equilibrium outcomes. Moreover, the underlying equilibrium is an equi-
librium with immediate agreement. Our result shows that when the discount
factor is large, the Kalai-Smorodinsky solution outcome is the unique equilib-
rium outcome. Moreover, the underlying equilibrium is an equilibrium with
arbitration.

When the bargaining set has a linear Pareto frontier, it can be verified that
the threshold discount factor δ̂ in Theorem 4 is 2

3
, regardless of what the slope

11The Kalai-Smorodinsky solution is the axiomatic solution that satisfies the following
four axioms: Invariance w.r.t. Affine Transformation, Pareto Optimality, Symmetry and
Individual Monotonicity. The Kalai-Smorodinsky solution differs from the Nash solution by
replacing the axiom of Independence of Irrelevant Alternatives with the axiom of Individual
Monotonicity.
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of the Pareto frontier might be. This threshold is the same as the threshold
continuation probability obtained in Anbarci and Boyd (2011).12 This is not
surprising because (i) the continuation probability in Anbarci and Boyd (2011)
is equivalent to the discount factor in our game (see also footnote 2), and (ii)
the symmetric arbitration solution coincides with the rule of “equally splitting
the difference” when the Pareto frontier is linear.

5.2 Alternating-Offer Game

This subsection will propose and analyze an alternating-offer game that in-
volves symmetric arbitration.13 In particular, we define the alternating-offer
game with symmetric arbitration as the following three-stage procedure:

1. Stage 1: player 1 makes an offer (x1, y1) ∈ PF (S) and player 2 decides
whether to accept the offer, ending the game with (x1, y1), or reject the
offer, moving the game on to the next stage;

2. Stage 2: player 2 makes an offer (x2, y2) ∈ PF (S) and player 1 decides
whether to accept the offer, ending the game with (x2, y2), or reject the
offer, moving the game on to the final stage (arbitration stage);

3. Stage 3: an arbitrator decides the final outcome using the symmetric
arbitration solution, i.e., γ((x1, y1), (x2, y2)) is the arbitrated outcome.14

Players’ payoffs obtained at stage i are subject to a discount of δi−1. We
will characterize the subgame perfect equilibria (henceforth SPE) of this game.
We first impose two tie-breaking rules and make some definitions.

Tie-breaking rule 1: whenever a player is indifferent between acceptance
and rejection, he always chooses acceptance.

12The proof of corollary 3 of Anbarci and Boyd (2011) suggests that when the Pareto
frontier is linear, the equilibrium with immediate agreement appears only if the continuation
probability is less than 2

3 .
13Our game defined below is a variant of the alternating-offer game proposed by Yildiz

(2011). Yildiz (2011) assumed that two players make offers sequentially and that if both of-
fers are rejected by opponents, then the final offer arbitration rule is used to decide the final
outcome. The final offer arbitration rule used by Yildiz (2011) is such that the offer that
yields the higher Nash product is chosen as the arbitration outcome. It turns out that the
unique subgame perfect equilibrium outcome in his game coincides with the equilibrium out-
come in Rubinstein’s infinite-horizon alternating-offer bargaining game (Rubinstein, 1982).

14We assume that if (x1, y1) and (x2, y2) are compatible, then each player gets what he
demands at stage 2. Notice that in equilibrium, player 2 will never make an offer that is
incompatible with player 1’s offer.
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Tie-breaking rule 2: whenever a player is indifferent between the two op-
tions that he will offer his opponent, he always chooses the option that brings
a higher payoff for his opponent.

Definition 6. For any (x1, y1) ∈ PF (S) with (x1, y1) 6= (0, b2) and (x2, y2) ∈
PF (S) with x2 ≤ δx1, define the following points (refer to Figure 9): A =
(x2, y2); B = (x2, f(1

δ
x2)); C = (1

δ
x2, f(1

δ
x2)); D = (1

δ
x2, y1) and E = (x1, y1).

S
1U

2U

2 2( , )x y A=

D

2(0, )b

1 1( , )x y E=
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1
( )y f x
δ
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( )y f x=
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Figure 9: Definitions of points A, B, C, D and E.

The points A, B, C, D and E implicitly depend on (x1, y1) and/or (x2, y2).
However, for simplicity, we omit that dependence in the notation. The curve
y = f(1

δ
x) in Figure 9 is obtained by fixing the payoff of player 2 and scaling

down the payoff of player 1 by the discount factor δ.15 Thus, for player 1, he
must be indifferent between accepting the outcome B at the current stage and
accepting the outcome C at the next stage. It should be noted that the point
D is typically not on the curve y = f(1

δ
x).

Definition 7. For any given (x1, y1) ∈ PF (S) with (x1, y1) 6= (0, b2), define
(x̂2(x1, y1), ŷ2(x1, y1)) as the unique point (x2, y2) ∈ PF (S) that satisfies: (i)
x2 ≤ δx1; (ii) |AB| ∗ |BC| = |CD| ∗ |DE|.

The point (x̂2(x1, y1), ŷ2(x1, y1)) is well-defined because as (x2, y2) ∈ PF (S)
moves along the Pareto frontier from (0, b2) to (δx1, f(δx1)), |AB| ∗ |BC|
strictly increases from zero to some positive number and |CD| ∗ |DE| strictly
decreases from a positive number to zero. If |AB| ∗ |BC| = |CD| ∗ |DE|,

15To see this, note y = f( 1
δx) can be rewritten as x = δf−1(y).
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then the main diagonal of the rectangle AMEN must intersect the Pareto
frontier at the point C (see Figure 10). That is, we must have C =
γ((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))). Since for player 1, δC ∼ B, we thus have
δγ1((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) = x̂2(x1, y1). The following lemma further
shows that for any given (x1, y1), the point (x̂2(x1, y1), ŷ2(x1, y1)) is actually
the only point on the Pareto frontier that satisfies δγ1((x1, y1), (x2, y2)) = x2.
It also shows that x̂2(x1, y1) is strictly increasing in x1.
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Figure 10: Definition of (x̂2(x1, y1), ŷ2(x1, y1)).

Lemma 2. For (x1, y1) ∈ PF (S) with (x1, y1) 6= (0, b2), we have:

(i) δγ1((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) = x̂2(x1, y1);

(ii) for any (x2, y2) ∈ PF (S) with x2 < x̂2(x1, y1), we have:
δγ1((x1, y1), (x2, y2)) > x2;

(iii) for any (x2, y2) ∈ PF (S) with x2 > x̂2(x1, y1), we have:
δγ1((x1, y1), (x2, y2)) < x2;

(iv) if (x′1, y
′
1) ∈ PF (S) and x′1 > x1, then we have: x̂2(x

′
1, y
′
1) > x̂2(x1, y1).

Proof: see the appendix. �

An implication of Lemma 2 (i) (ii) and (iii) is that, if the game were at stage
2 and player 2 made the offer (x2, y2), then whether or not player 1 accepts
the offer depends on whether or not x2 is greater than x̂2(x1, y1). That is, we
have:

Corollary 1. Suppose player 1 offers (x1, y1) 6= (0, b2) at stage 1 which player
2 rejects and player 2 makes an offer (x2, y2) at stage 2, then player 1 will
accept the offer (x2, y2) if and only if x2 ≥ x̂2(x1, y1).
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The following lemma characterizes the players’ equilibrium behavior at
stage 2. It is essential for our main result in characterizing the SPE of our
entire game.

Lemma 3. In equilibrium, if at stage 1, player 1 offers (x1, y1) 6= (0, b2) which
player 2 rejects, then at stage 2, we have:

(i) player 2 must either offer (0, b2) which player 1 rejects, or offer
(x̂2(x1, y1), ŷ2(x1, y1)) which player 1 accepts.

(ii) if (x1, y1) 6= (b1, 0), then player 2 must be indifferent between offering (0, b2)
and offering (x̂2(x1, y1), ŷ2(x1, y1)), i.e., δγ2((x1, y1), (0, b2)) = ŷ2(x1, y1).

Proof: see the appendix. �

The intuition of Lemma 3 (i) is straightforward. If player 1 offers (x1, y1) 6=
(0, b2) which player 2 rejects, then at stage 2, player 2 can either make an offer
that player 1 will reject or make an offer that player 1 will accept. In the former
case, player 2’s best option is to make the extreme offer (0, b2), because the
more demand he makes in his offer, the more arbitrated payoff he can obtain
at the arbitration stage (according to Lemma 1). In the latter case, player
2’s best option is to make the offer (x̂2(x1, y1), ŷ2(x1, y1)), because his offer
(x2, y2) will be accepted by player 1 if and only if x2 ≥ x̂2(x1, y1) (according
to Corollary 1).

Lemma 3 (ii) states that as soon as (x1, y1) /∈ {(0, b2), (b1, 0)} is re-
jected by player 2 at stage 1, then player 2 must be indifferent between
making the extreme offer (i.e., offering (0, b2)) and “concession” (i.e., offer-
ing (x̂2(x1, y1), ŷ2(x1, y1))) at stage 2. This is because, if player 2 strictly
prefers one option over the other, say, player 2 strictly prefers offering
(x̂2(x1, y1), ŷ2(x1, y1)) over offering (0, b2), then at stage 1, player 1 has the
incentive to deviate to a slightly more extreme offer (x1 + ε, f(x1 + ε)). Such
a small deviation will not change player 2’s preference over the two options
at stage 2, i.e., player 2 strictly prefers offering (x̂2(x1 + ε, f(x1 + ε)), ŷ2(x1 +
ε, f(x1 + ε))) over offering (0, b2). As a result, after deviation, player 1 obtains
a payoff of x̂2(x1+ε, f(x1+ε)) which is higher than x̂2(x1, y1), the payoff before
deviation (according to Lemma 2 (iv)).

A direct result of Lemma 3 (i) is the following theorem, which characterizes
all SPE of the game. Note that in equilibrium, player 1 will never offer (0, b2)
at stage 1 because the offer (0, b2) is dominated by the offer (b1, 0) which will
bring him a payoff of at least δ2γ((b1, 0), (0, b2)) > 0. In addition, using tie-
breaking rule 1 and tie-breaking rule 2, it can be shown that the SPE of the
game must be unique.
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Theorem 5. In the alternating-offer game with symmetric arbitration, there
exists a unique SPE and the unique SPE must take one of the following three
forms:

(i) (immediate-agreement) at stage 1, player 1 offers (x1, y1) 6= (0, b2) which
player 2 accepts;

(ii) (delayed-agreement) at stage 1, player 1 offers (x1, y1) 6= (0, b2) which
player 2 rejects; at stage 2, player 2 offers (x̂2(x1, y1), ŷ2(x1, y1)) which player
1 accepts;

(iii) (arbitration) at stage 1, player 1 offers (x1, y1) 6= (0, b2) which player 2
rejects; at stage 2, player 2 offers (0, b2) which player 1 rejects.

Theorem 5 states that the unique SPE of the alternating-offer game with
symmetric arbitration is either an equilibrium with immediate agreement, or
an equilibrium with delayed agreement, or an equilibrium with arbitration.
The equilibrium type depends on the discount factor. This dependency may
be very complex. However, the next theorem shows that as long as the dis-
count factor is sufficiently large, then the unique SPE of the game must be
an equilibrium with arbitration and the corresponding arbitration outcome
coincides with the Kalai-Smorodinsky solution outcome.

Theorem 6. There exists a δ∗ ∈ (0, 1) with 0 < δ∗ < 1, such that when
δ ∈ (δ∗, 1], the unique SPE of the alternating-offer game with symmetric ar-
bitration is that at stage 1, player 1 makes the offer (b1, 0) which player 2
rejects, and at stage 2, player 2 makes the offer (0, b2) which player 1 rejects;
the equilibrium outcome of the game is thus γ((b1, 0), (0, b2)) which coincides
with the Kalai-Smorodinsky solution outcome of the Nash bargaining problem
((0, 0), S).

Proof: see the appendix. �

When the Pareto frontier of the bargaining set is linear, it can be verified
that the threshold discount factor δ∗ is 0.91. This threshold is much larger
than the threshold discount factor obtained in the simultaneous-offer game for
the linear Pareto frontier case. This is because there are three stages in the
alternating-offer game, but only two stages in the simultaneous-offer game. In
other words, for a given discount factor, the arbitration outcome is discounted
more severely in the alternating-offer game. As a result, in the alternating-
offer game, players have less incentive to make extreme offers and the result
that players make extreme offers in equilibrium is less robust.
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6 Conclusion

This paper defines a class of arbitration problems and characterizes its solu-
tion using the axiomatic approach. We impose three axioms that an arbitrator
should use. They are “Symmetry in Offers”, “Invariance” and “Pareto Opti-
mality”. The key rule, Symmetry in Offers, requires that whenever players’
offers are symmetric, the arbitrated outcome should also be symmetric. We
show that there is a unique arbitration solution, called the symmetric arbi-
tration solution, that satisfies all three axioms. The symmetric arbitration
solution has a simple graphical representation.

We then introduce symmetric arbitration in two bargaining games. One is
the simultaneous-offer game and the other is the alternating-offer game. At the
arbitration stage of both games, the arbitrator uses the symmetric arbitration
solution to decide the arbitration outcome. We show that in both games, if
the discount factor is sufficiently close to 1, then the unique equilibrium is
such that both players make extreme offers and the corresponding equilibrium
outcome is the Kalai-Smorodinsky solution outcome.

Although the equilibrium outcomes of the two games coincide with that
of the Kalai-Smorodinsky solution (when δ is close to 1), our result is not
a typical implementation result. Strictly speaking, a strategic implementa-
tion of an axiomatic bargaining solution requires that the mechanism used
for implementation can be translated into a form that only depends on the
physical outcomes of bargaining and not on the players’ preferences or utility
representations (Serrano, 1997; Dagan and Serrano, 1998). Our games can-
not be translated into a form that only depends on the physical outcomes,
because the symmetric arbitration solution is defined on the basis of play-
ers’ utilities. However, compared with the implementation mechanism on the
Kalai-Smorodinsky solution in the literature16, our games are much more sim-
ple. Our games also help us to understand the Kalai-Smorodinsky solution
from a new perspective. That is, the Kalai-Smorodinsky solution outcome is
the only fair and efficient arbitration outcome when both players make extreme
offers.

Although our model assumes that both players have the same discount
factor, our main result can be extended to the case where the two players’
discount factors differ. That is, as long as the discount factors of the two
players are sufficiently close to 1, then the unique equilibrium outcome of both
the simultaneous-offer game and the alternating-offer game coincides with the

16See, for example, the “auctioning fractions of dictatorship” mechanism proposed by
Moulin (1984).
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Kalai-Smorodinsky solution outcome.

Appendix

Proof of Lemma 1

Let’s consider γ1. For any given x1 ∈ [d1, b1] and x′1 ∈ [d1, b1] with x1 < x′1
and any x2 ∈ [d2, b2] with x2 < x1, the line connecting (x1, f(x1))∧ (x2, f(x2))
and (x1, f(x1)) ∨ (x2, f(x2)) is strictly above the line connecting (x′1, f(x′1)) ∧
(x2, f(x2)) and (x′1, f(x′1))∨ (x2, f(x2)) (see Figure 11). Since the Pareto fron-
tier is strictly downward-sloping, we must have γ1((x1, f(x1)), (x2, f(x2))) <
γ1((x

′
1, f(x′1)), (x2, f(x2))). Thus, γ1((x1, f(x1)), (x2, f(x2))) is strictly increas-

ing in x1. Similarly, γ1((x1, f(x1)), (x2, f(x2))) is strictly increasing in x2.

S

1U

1 1( , ( ))x f x
2 2( , ( ))x f x

2(0, )b

1( ,0)b

1 1( , ( ))x f x′ ′

2U

1 1 1 2 2(( , ( )), ( , ( )))x f x x f xγ ′ ′
1 1 1 2 2(( , ( )), ( , ( )))x f x x f xγ

Figure 11: γ1((x1, f(x1)), (x2, f(x2))) and γ1((x
′
1, f(x′1)), (x2, f(x2))) where

x1 < x′1.

The proof for γ2 is similar and is omitted.

Proof of Theorem 3

(i) The result holds if the following is true:
(a) if player 2’s offer is (x, y) ∈ PF (S), then (x, y) is player 1’s best response

if and only if x ≥ δx̃(x); (b) if player 1’s offer is (x, y) ∈ PF (S), then (x, y) is
player 2’s best response if and only if y ≥ δỹ(y).

We will only prove (a) in the following. The proof of (b) is similar.
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Suppose player 2’s offer is (x, y). If player 1 makes an offer (x′, y′) ∈ PF (S)
with 0 ≤ x′ < x, then since (x′, y′) and (x, y) are compatible, player 1’s
payoff must be x′, which is strictly less than x. If player 1 makes an offer
(x′, y′) ∈ PF (S) with x < x′ ≤ b1, then by Lemma 1, his payoff is at most
δx̃(x). Thus, we have shown that (x, y) is player 1’s best response if and only
if x ≥ δx̃(x).

(ii) We will show that for any δ ∈ (0, 1], ((b1, 0), (0, b2)) is a Nash equilib-
rium. We will first show that (b1, 0) is player 1’s best response to player 2’s
offer (0, b2). Suppose player 2’s offer is (0, b2), then player 1 can either make
the offer (0, b2) or make some offer (x, f(x)) 6= (0, b2). If player 1 offers (0, b2),
then his payoff is 0. If player 1 offers (x, f(x)) 6= (0, b2), then the game will
move to the arbitration stage and player 1’s payoff is δγ1((x, f(x)), (0, b2)) > 0.
Now, by Lemma 1, δγ1((x, y), (0, b2)) is strictly increasing in x, so player 1’s
best response to player 2’s offer (0, b2) is (b1, 0). Similarly, player 2’s best
response to player 1’s offer (b1, 0) is (0, b2). Thus, ((b1, 0), (0, b2)) is a Nash
equilibrium for any δ ∈ (0, 1].

At last, note that ((x, y), (x, y)) ((x, y) ∈ PF (S)) and ((b1, 0), (0, b2)) are
the only two possible types of Nash equilibria, i.e., any ((x1, f(x1)), (x2, f(x2)))
with ((x1, f(x1)), (x2, f(x2))) 6= ((b1, 0), (0, b2)) and x1 6= x2 cannot be the
Nash equilibrium for any δ ∈ (0, 1]. This is because (i) if x1 < x2, then the two
offers are compatible and player 1 has incentive to deviate to (x1 +ε, f(x1 +ε))
with some x1 + ε ≤ x2; (ii) if x1 > x2, then by Lemma 1, the player who does
not make the extreme offer has the incentive to deviate to making the extreme
offer.

Proof of Theorem 4

First notice that x∗(δ) is well-defined because (i) δx̃(x)−x = (x̃(x)−x)− (1−
δ)x̃(x) is strictly decreasing in x (see Figure 12), (ii) δx̃(x)− x > 0 at x = 0,
and (iii) δx̃(x)− x ≤ 0 at x = b1. Similarly, y∗(δ) is well-defined.

Since δx̃(x)−x is strictly decreasing in x, x ≥ δx̃(x) if and only if x ≥ x∗(δ).
That is, if player 2’s offer is (x, y) ∈ PF (S), then player 1’s best response is
to make the same offer if and only if x ≥ x∗(δ). Similarly, if player 1’s offer is
(x, y) ∈ PF (S), then player 2’s best response is to make the same offer if and
only if y ≥ y∗(δ) (see Figure 13).

Observing that x∗(δ) → b1 and f−1(y∗(δ)) → 0 as δ → 1, and x∗(δ) → 0
and f−1(y∗(δ)) → b1 as δ → 0, there exists a unique δ ∈ (0, 1), denoted by δ̂,
that satisfies x∗(δ) = f−1(y∗(δ)).

According to Lemma 3, ((x, y), (x, y)) ((x, y) ∈ PF (S)) is a Nash equi-
librium if and only if x ≥ δx̃(x) and y ≥ δỹ(y). So, ((x, y), (x, y)) ((x, y) ∈
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S

1U

2U

( , )x y

( , )x y′ ′

2(0, )b

( )x x′�

1( ,0)bx x′

( )x x�

Figure 12: x̃(x) − x is strictly decreasing in x and x̃(x) is strictly increasing
in x.

PF (S)) is a Nash equilibrium if and only if x∗(δ) ≤ x ≤ f−1(y∗(δ)). The
remainder of the proof is straightforward and is omitted.

S

1U

2U

*( )y δ

2(0, )b

1( ,0)b*( )x δ

"concession region" 
of player 2

"concession
 region" 
of player 1

S

( , )x y

( , )′ ′

(0, )

( )′
( ,0)x x′

( )x x

Figure 13: The regions that players will choose “concession” instead of making
the extreme offers.

Proof of Lemma 2

(i) Refer to Figure 10. By definition, for any given (x1, y1) with (x1, y1) 6=
(0, b2), the pair ((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) satisfies |AB| ∗ |BC| = |CD| ∗
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|DE|. This implies that the point C must be on the line that connects (x1, y1)∧
(x2, y2) (i.e., M) and (x1, y1)∨ (x2, y2) (i.e., N). In addition, notice that point
C is on PF (S). Then, we must have C = γ((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))).
Since by definition, C = (1

δ
x̂2(x1, y1), f(1

δ
x̂2(x1, y1))), we have:

δγ1((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) = x̂2(x1, y1).

(ii) Refer to Figure 14. Note that for given (x1, y1) with (x1, y1) 6= (0, b2), as
(x2, y2) moves from the lower-right to the upper-left along the Pareto frontier,
the corresponding |AB| ∗ |BC| strictly decreases and |CD| ∗ |DE| strictly
increases. Thus, for (x2, y2) ∈ PF (S) with x2 < x̂2(x1, y1), we must have
|AB| ∗ |BC| < |CD| ∗ |DE|. This implies the slope of the line MC is bigger
than that of the line MN . Thus, the point O (the intersection point of the
line MN with PF (S)) must be on the right of the line CD, then we have:
γ1((x1, y1), (x2, y2)) >

1
δ
x2, i.e., δγ1((x1, y1), (x2, y2)) > x2.

S
1U

2U

2 2( , )x y A=

D
1 1( , )x y E=

1
( )y f x
δ

=

( )y f x=

B

M

N

O

C

1( ,0)b

2(0, )b

Figure 14: The case where x2 < x̂(x1, y1).

(iii) We have three sub-cases here:
(a) x̂2(x1, y1) < x2 ≤ δx1
Refer to Figure 15. Note that for any given (x1, y1) with (x1, y1) 6= (0, b2),

as (x2, y2) moves from the upper-left to the lower-right along the Pareto fron-
tier, the corresponding |AB| ∗ |BC| strictly increases and |CD| ∗ |DE| strictly
decreases. Thus, for (x2, y2) ∈ PF (S) with x2 > x̂2(x1, y1), we must have
|AB| ∗ |BC| > |CD| ∗ |DE|. This implies the slope of the line MC is smaller
than that of the line MN . Thus, the point O must be on the left of the line
CD, then we have: γ1((x1, y1), (x2, y2)) <

1
δ
x2, i.e., δγ1((x1, y1), (x2, y2)) < x2.
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(b) δx1 < x2 ≤ x1
For this case, since x2 ≤ x1, then we must have γ1((x1, y1), (x2, y2)) ≤ x1.

Then: δγ1((x1, y1), (x2, y2)) ≤ δx1 < x2.

S

x y A

D
x y E

( )y f x

( )y f x

B

N

O

C

( ,0)

S
1U

2U

2 2( , )x y A=

D

2(0, )b

1 1( , )x y E=
CB

1
( )y f x
δ

=

( )y f x=

O

M

N

1( ,0)b

(0, )

Figure 15: The case where x̂2(x1, y1) < x2 ≤ δx1.

(c) x2 > x1
For this case, since x2 > x1, then we have γ1((x1, y1), (x2, y2)) < x2. Thus,

δγ1((x1, y1), (x2, y2)) < x2.
(iv) Refer to Figure 16. Suppose we have (x′1, y

′
1) ∈ PF (S) and x′1 > x1.

Now, for (x1, y1) and (x̂2(x1, y1), ŷ2(x1, y1)), we have:

|AB| ∗ |BC| = |CD| ∗ |DE|

Since (x′1, y
′
1) is on the lower right of (x, y), we have:

|AB| ∗ |BC| < |CD′| ∗ |D′E ′|.

Again, note that for given (x1, y1), as (x2, y2) moves from the upper-left to
the lower-right along the Pareto frontier, |AB| ∗ |BC| strictly increases, and
|BC| ∗ |CD| strictly decreases. So, we must have

x̂2(x
′
1, y
′
1) > x̂2(x1, y1).

Proof of Lemma 3

(i) The proof is obvious and is omitted.
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δ

=
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2(0, )b
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Figure 16: A comparison of x̂2(x
′
1, y
′
1) and x̂2(x1, y1) where x′1 > x1.

(ii) Suppose player 1 offers (x1, y1) /∈ {(0, b2), (b1, 0)}. By part (i), we know
that if player 2 rejects (x1, y1) 6= (0, b2), then at stage 2, he must either offer
(0, b2) or offer (x̂2(x1, y1), ŷ2(x1, y1)). The corresponding (stage 1) payoff for
player 2 is either δ2γ2((x1, y1), (0, b2)) or δŷ2(x1, y1). Since player 2 chooses to
reject (x1, y1) at stage 1, then we must have:

max{δ2γ2((x1, y1), (0, b2)), δŷ2(x1, y1)} > y1.

Note that the above inequality is strict because we have assumed that whenever
a player is indifferent between “accept” and “reject”, he must choose “accept”.
Now, let’s consider the following two cases:

(a) δ2γ2((x1, y1), (0, b2)) > δŷ2(x1, y1)
In this case, player 2 must offer (0, b2) at stage 2. Player 1 thus

obtains a payoff of δ2γ1((x1, y1), (0, b2)). We will show that player 1
will gain more if he submits a more extreme offer at stage 1. In par-
ticular, since (x1, y1) 6= (b1, 0), we can find an ε′ > 0 such that
x′1 = x1 + ε′ < b1, y′1 = f(x′1), δ2γ2((x

′
1, y
′
1), (0, b2)) > δŷ2(x

′
1, y
′
1) and

max{δ2γ2((x′1, y′1), (0, b2)), δŷ2(x′1, y′1)} > y′1. That is, if player 1 offers (x′1, y
′
1)

at stage 1, then player 2 must reject it and still offer (0, b2) at stage 2. Thus,
player 1 will obtain a payoff of δ2γ1((x

′
1, y
′
1), (0, b2)) by offering (x′1, y

′
1) at stage

1. Now, since x′1 > x1, we have δ2γ1((x
′
1, y
′
1), (0, b2)) > δ2γ1((x1, y1), (0, b2)).

That is, player 1 is better off by offering (x′1, y
′
1).

(b) δŷ2(x1, y1) > δ2γ2((x1, y1), (0, b2))
In this case, player 2 must offer (x̂2(x1, y1), ŷ2(x1, y1)) at stage 2. Player
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1 obtains a payoff of δx̂2(x1, y1). Again, we will show that player 1
can gain more if he makes a more extreme offer at stage 1. In par-
ticular, since (x1, y1) 6= (b1, 0), we can find an ε′′ > 0 such that
x′′1 = x1 + ε′′ < b1, y

′′
1 = f(x′′1), δŷ2(x

′′
1, y
′′
1) > δ2γ2((x

′′
1, y
′′
1), (0, b2)) and

max{δ2γ2((x′′1, y′′1), (0, b2)), δŷ2(x
′′
1, y
′′
1)} > y′′1 . That is, if player 1 offers (x′′1, y

′′
1)

at stage 1, then player 2 must reject it and offer (x̂2(x
′′
1, y
′′
1), ŷ2(x

′′
1, y
′′
1)) at stage

2. Note (x̂2(x
′′
1, y
′′
1), ŷ2(x

′′
1, y
′′
1)) must be accepted by player 1. Thus, player 1

will obtain a payoff of δx̂2(x
′′
1, y
′′
1) by offering (x′′1, y

′′
1) at stage 1. Now, by

Lemma 2 (iv), since x′′1 > x1, we have: δx̂2(x
′′
1, y
′′
1) > δx̂2(x1, y1). That is,

player 1 is better off by offering (x′′1, y
′′
1).

Thus, we have proved that if (x1, y1) /∈ {(0, b2), (b1, 0)}, then we must have
δγ2((x1, y1), (0, b2)) = ŷ2(x1, y1) in equilibrium.

Proof of Theorem 6

We denote γ((b1, 0), (0, b2)) as (x∗, y∗) for simplicity.

Let δ∗1 be the unique δ ∈ (0, 1) that satisfies δ2 =
2f(δ2x∗)

f(δ2x∗) + b2
. Let

δ∗2 = max 4
9
x∗≤x1≤b1 δ

∗
2(x1) where δ∗2(x1) is the unique δ ∈ (0, 1) that satisfies

δ
f(x1) + b2

2
= f(

δ
2
x1

1− δ
2

). Let δ∗ = max{δ∗1, δ∗2, 23}. Note since δ∗1 ∈ (0, 1) and

δ∗2 ∈ (0, 1), we have δ∗ ∈ (0, 1).
The proof is divided into two steps.
First step: We will show that, if δ ∈ (δ∗, 1], then player 1 must offer (b1, 0)

at stage 1.
First, we will show that, if δ ∈ (δ∗, 1], then player 1 will never offer (x1, y1)

with x1 ∈ [0, δ2x∗). In particular, We will show that for player 1, any offer
(x1, y1) with x1 ∈ [0, δ2x∗) is strictly dominated by the offer (b1, 0).

Note that if player 1 makes the offer (x1, y1) with x1 ∈ [0, δ2x∗), then his
payoff is at most x1. If player 1 proposes (b1, 0), then by Lemma 3, player 2
may choose to accept, or reject with counteroffer (0, b2) which player 1 rejects,
or reject with counteroffer (x̂2(b1, 0), ŷ2(b1, 0)) which player 1 accepts. If player
2 accepts, then player 1’s payoff is b1; if player 2 rejects with counteroffer (0, b2)
which player 1 rejects, then player 1’s payoff is δ2γ1((b1, 0), (0, b2)) = δ2x∗; if
player 2 rejects with counteroffer (x̂2(b1, 0), ŷ2(b1, 0)) which player 1 will ac-
cept, then player 1’s payoff is δx̂2(b1, 0) = δ2γ1((b1, 0), (x̂2(b1, 0), ŷ2(b1, 0)))
(the equality is by Lemma 2 (i)). Since γ1((b1, 0), (x̂2(b1, 0), ŷ2(b1, 0))) ≥
γ1((b1, 0), (0, b2)), we have: δx̂2(b1, 0) ≥ δ2γ1((b1, 0), (0, b2)) = δ2x∗. Thus,
we have shown that, if player 1 proposes (b1, 0) at stage 1, then his payoff is
at least δ2x∗. Hence, player 1 will never offer (x1, y1) with x1 ∈ [0, δ2x∗).
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Second, we will show that, if δ ∈ (δ∗, 1], then player 1 will never offer
(x1, y1) with x1 ∈ [δ2x∗, b1). We have the following two cases:

(i) (x1, y1) is accepted by player 2.
Note that, if player 2 rejects (x1, y1), then his payoff is at least

δ2γ2((x1, y1), (0, b2)). Since player 2 chooses to accept (x1, y1), then we must
have:

δ2γ2((x1, y1), (0, b2)) ≤ y1.

Since δ2γ2((x1, y1), (0, b2)) ≥ δ2

2
(y1+b2) (using the fact that the Pareto frontier

is strictly “bowed-out”), then we have δ2

2
(y1 + b2) ≤ y1, i.e., δ2 ≤ 2y1

y1 + b2
.

Since y1 = f(x1) ≤ f(δ2x∗) ≤ f(δ∗21 x
∗) and

2y1
y1 + b2

is increasing in y1, we

have δ2 ≤ 2f(δ∗21 x
∗)

f(δ∗21 x
∗) + b2

= δ∗21 ≤ δ∗2. Contradiction with δ > δ∗.

(ii) (x1, y1) is rejected by player 2.
We will compare δγ1((x1, y1), (0, b2)) and ŷ2(x1, y1).
First, note that by Lemma 2 (i) and the fact that the

Pareto frontier is strictly “bowed-out”, we have: x̂2(x1, y1) =

δγ1((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) ≥ δ
x̂2(x1, y1) + x1

2
. Then we have:

x̂2(x1, y1) ≥
δ
2
x1

1− δ
2

. Then, ŷ2(x1, y1) ≤ f(
δ
2
x1

1− δ
2

). Therefore,

ŷ2(x1, y1) ≤ f(
δ
2
x1

1− δ
2

) < δ
y1 + b2

2
(5)

The last inequality is because δ > δ∗ ≥ δ∗2 ≥ δ∗2(x1),
17 δ∗2(x1) satisfies

f(

δ∗2(x1)

2
x1

1− δ∗2(x1)

2

) = δ∗2(x1)
f(x1) + b2

2
, f(

δ
2
x1

1− δ
2

) is strictly decreasing in δ, δ
y1 + b2

2

is strictly increasing in δ and y1 = f(x1).

Now, note δγ2((x1, y1), (0, b2)) ≥ δ
y1 + b2

2
. Then, we have:

δγ2((x1, y1), (0, b2)) > ŷ2(x1, y1).

However, by Lemma 3 (ii), if at stage 1, player 1’s makes the offer (x1, y1) /∈

17The inequality δ∗2 ≥ δ∗2(x1) is true because of the following. Note that δ > δ∗ implies
δ > 2/3, which implies δ∗2 = max 4

9x
∗≤x1≤b1 δ

∗
2(x1) ≥ maxδ2x∗≤x1≤b1 δ

∗
2(x1). So, for any

x1 ∈ [δ2x∗, b1), we have δ∗2 ≥ δ∗2(x1).
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{(0, b2), (b1, 0)} and player 2 rejects it, then we must have

δγ2((x1, y1), (0, b2)) = ŷ2(x1, y1).

Contradiction!
Thus, we have proved that player 1 will never offer (x1, y1) with x1 ∈

[δx∗, 1). In addition, we have already proved that player 1 will never offer
(x1, y1) with x1 ∈ [0, δx∗). Thus, player 1 must offer (b1, 0) at Stage 1.

Second Step: We will show that if δ ∈ (δ∗, 1], and if player 1 offers (b1, 0)
at stage 1, then player 1 must reject it and offers (0, b2) at stage 2.

If (b1, 0) is proposed by player 1 at stage 1, then by Lemma 2, player 2 has
three options: (a) accept (b1, 0) – player 2’s payoff is 0; (b) reject (b1, 0) and
makes the counteroffer (0, b2) – player 2’s payoff is δ2γ2((b1, 0), (0, b2)); and (c)
reject (b1, 0) and makes the counteroffer (x̂2(b1, 0), ŷ2(b1, 0)) – player 2’s payoff
is δŷ2(b1, 0).

Using a technique similar to that used in deriving inequality 5, we

have: δŷ2((b1, 0)) ≤ δ2
b2
2

. Now since δ2γ2((b1, 0), (0, b2)) > δ2
b2
2

, we have

δ2γ2((b1, 0), (0, b2)) > δŷ2((b1, 0)). Thus, player 2 must choose the second op-
tion, i.,e, player will reject (b1, 0) and offers (0, b2) at Stage 2.
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