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Abstract

For school choice (priority-based allocation) problems, when the priority structure

is acyclic, the associated student-proposing deferred acceptance algorithm is Pareto

efficient and group strategy-proof (Ergin, 2002). We reveal a hidden iterative removal

structure behind such deferred acceptance algorithms. A nonempty set of students is

called a top fair set (TFS) if when all students apply to their most preferred schools and

all schools accept the best applicants up to their quotas, students in the set are always

accepted, regardless of other students’ preferences. We provide an elimination process

to find the maximal TFS, if any TFS exists. We show that for any priority structure,
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iterative removal of TFS is equivalent to the associated deferred acceptance algorithm

if and only if the latter is a Pareto efficient mechanism.

JEL classification: C78; D61; D78; I20

Keywords: Deferred acceptance algorithm, Pareto efficiency, school choice, stability,

strategy-proofness

1 Introduction

We study the allocation of a set of indivisible objects to a set of agents without monetary

transfers. Each agent has unit demand and is assumed to have strict preference over

object types. The most prominent example of such problems is school choice.1 We will

refer to agents as students, object types as schools and study school choice problems. An

allocation mechanism specifies an assignment of school seats to students for each profile

of students’ preferences. In practice, each school has a fixed quota of seats and is often

associated with a priority list over students. Schools’ priority lists and quotas together

define a priority structure.

Stability and students’ welfare are both desirable in school choice. The concept of

stability is introduced in the classical work of Gale and Shapley (1962) for college ad-

mission problems, and it is later reinterpreted as fairness in school choice (Balinski and

Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003). An assignment is fair if it eliminates

priority violation (or justified-envy), i.e., if there is no student-school pair in which the

student desires the school while a lower-priority student is assigned. However, it is well

known that fairness and Pareto efficiency are not compatible: even the student-optimal

stable matching, which is produced by Gale and Shapley’s celebrated student-proposing

1Other examples include house allocation, task assignment, and course assignment.
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deferred acceptance algorithm (henceforth, DA), may not be Pareto efficient for students

(Roth, 1982; Abdulkadiroğlu and Sönmez, 2003). Ergin (2002) characterizes priority struc-

tures at which DA is an efficient mechanism and calls them acyclic priority structures.2

We study the driving force behind efficient DA mechanisms by revealing an iterative

structure behind their deferred acceptance appearance. We call a nonempty set of stu-

dents a top fair set (TFS) if when all students apply to their most preferred schools and

all schools accept the best applicants up to their quotas, students in this set are always

accepted, regardless of other students’ preferences. For a given school choice problem, a

TFS may or may not exist, and when it exists, we can assign students in it and remove

them. After that, iteratively, we search for TFS at the remaining subproblem, and upon

existence, assign and remove it. We call this process the TFS algorithm.

A priority structure is said to be TFS-solvable if for any profile of students’ preferences,

a TFS always exists in each step of the TFS algorithm, until all are assigned. Our main

result shows that, a priority structure is TFS-solvable if and only if the associated DA

mechanism is Pareto efficient, and when that happens, the TFS algorithm is equivalent

to the DA mechanism. Ergin (2002) shows that for any DA mechanism, the acyclicity

of the priority structure, Pareto efficiency, group strategy-proofness, and consistency are

all equivalent. Therefore, a priority structure is TFS-solvable if and only if it is acyclic.

By decomposing a Pareto efficient DA mechanism into a sequence of TFS, we reveal an

iterative removal structure in it and bring more intuition to its properties.

We also discover two properties of TFS. First, the union of any pair of TFS is also a

TFS. As a result, there is a maximal TFS if any exists. We then design an iterative elimi-

nation process which always find the maximal TFS, if any exists. Second, TFS embeds a

2Ergin’s acyclicity condition is extensively studied in the literature; e.g., it has been used in the charac-
terization of efficient priority rules (Ehlers and Klaus, 2006), Nash implementation of the stable matching
correspondence (Haeringer and Klijn, 2009), and robust stability (Kojima, 2011).
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form of consistency in it, just like that of the efficient DA mechanisms. If we assign and

remove any subset of students in a TFS, then at the subproblem that remains, the rest of

the TFS remains a TFS. With these properties, we know that in any step of the TFS al-

gorithm, when TFS exists, we are free to pick either the maximal one or any part of it to

assign.

Beside efficient DA mechanisms, all known efficient and group strategy-proof mech-

anisms are based on Gale’s top trading cycles (henceforth, TTC).3 The discovery of TFS

reveals that a new component, which differs from TTC, can also be used to construct ef-

ficient and group strategy-proof mechanisms. Since the formations of TFS and TTC are

both independent of other students’ preferences, in the terminology of Pycia and Ünver

(2017), they are both decisive groups.

This paper most closely relates to Ergin (2002). Ergin’s acyclicity condition and equiv-

alence results are later generalized by Kumano (2009) and Kojima and Manea (2010), re-

spectively, to acceptant substitutable priority.4 Kesten (2006) characterizes priority struc-

tures at which the priority-based TTC mechanism is stable, which form a strict subset

of Ergin’s acyclic priority structures. Recently, Abdulkadiroğlu et al. (2019) show that

when each school has only one seat, the priority-based TTC mechanism is maximally sta-

ble among strategy-proof and Pareto efficient mechanisms. Kesten (2004), Hakimov and

Kesten (2018) and Morrill (2015) propose strategy-proof and Pareto efficient variations of

the TTC mechanism which may improve its stability. Nonetheless, these variations are

not maximally stable, because in general when the priority structure is acyclic, they are

3The TTC mechanism is first introduced by Shapley and Scarf (1974) in housing market and is charac-
terized by Ma (1994). TTC-based mechanisms include, in increasing generality, the serial dictatorships (Sat-
terthwaite and Sonnenschein, 1981; Svensson, 1994), the priority-based TTC mechanisms (Abdulkadiroğlu
and Sönmez, 2003), the hierarchical exchange rules (Pápai, 2000), and the trading cycles mechanisms (Pycia
and Ünver, 2017).

4The DA mechanism is exended to substitutable priority by Roth and Sotomayor (1990). Kojima and
Manea (2010) characterize the class of all DA mechanisms when schools have acceptant substitutable pri-
ority.
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not outcome equivalent to DA, or equivalently, because they are not based on TFS.

The rest of the paper is organized as follows. We present notations, basic concepts,

and the DA mechanism in Section 2. TFS and its basic properties are introduced in Sec-

tion 3, and our main result is presented in Section 4. We conclude in Section 5. All proofs

are relegated into Appendix A.

2 Preliminaries

2.1 Notations

Fix a set of agents and a set of indivisible object types. For convenience, we represent

the set of agents by a set of students I = {1, . . . , n} and the set of object types by a set

of schools S = {s1, . . . , sm}. The quota of s ∈ S, denoted by qs ≥ 1, is the number of

available seats at s. There is a null school denoted by ∅, which has unlimited quota. For

any finite set X, let |X| denote the number of its elements.

Each school s ∈ S is associated with a strict priority list�s over students.5 If student i

has higher priority than student j at s, we write i �s j; if I1, I2 ⊂ I satisfy that for all i1 ∈ I1

and i2 ∈ I2, i1 �s i2, we write I1 �s I2. Each student i has a strict preference Pi over schools

in S∪ {∅}with symmetric extension Ri. If student i prefers (weakly prefers, resp.) school

s′ to school s, we write s′Pis (s′Ris, resp.). If sRi∅, then s is said to be acceptable to student

i. If s is i’s most preferred school, then we say s is her favorite or she favors s.

Let �≡ (�s)s∈S, P = (Pi)i∈I , and q ≡ (qs)s∈S denote the priority profile, preference

profile, and the vector of quotas, respectively. A priority structure consists of a pair (�, q),

5Therefore, all students are acceptable for each school. Let the priority list at the null school be an
arbitrary strict ranking of I.
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and a school choice problem consists of a triple (�, q; P).6

An assignment µ is a mapping from I to S ∪ {∅} such that |µ−1(s)| ≤ qs, ∀s ∈ S,

where µ(i) = ∅ represents that i is unassigned. Given a preference profile P, assignment

ν weakly Pareto dominates assignment µ at P if for all i ∈ I, ν(i)Riµ(i), and ν Pareto

dominates µ if in addition ν 6= µ. An assignment is Pareto efficient at P if it is not Pareto

dominated.

Student i desires school s at assignment µ if sPiµ(i). We say that at assignment µ,

student j violates student i’s priority at school s or (i, s) is a blocking pair of µ, if i desires

s, µ(j) = s and i �s j. An assignment µ is fair if no student’s priority at any school is

violated at µ, and it is non-wasteful if for any school s ∈ S ∪ {∅} that is desired by some

student at µ, |µ−1(s)| = qs. An assignment µ is stable if it is fair and non-wasteful.

An allocation mechanism ϕ selects an assignment ϕ(P) for all P. Let ϕ(P)(i) de-

note i’s assignment at ϕ(P). An allocation mechanism ϕ is Pareto efficient if it al-

ways selects a Pareto efficient assignment, and ϕ is stable w.r.t. a priority structure

(�, q) if for each P, ϕ(P) is stable at (�, q; P). An allocation mechanism ϕ is strategy-

proof if truth-telling is a weakly dominant strategy for all students, i.e., if for every

student i, ϕ(P)(i)Ri ϕ(P′i , P−i)(i) for all P′i and P−i. Likewise, ϕ is group strategy-

proof if there do not exist nonempty J ⊂ I, P and P′J = (P′i )i∈J such that for all

i ∈ J, ϕ(P′J , P−J)(i)Ri ϕ(P)(i), and for some j ∈ J, ϕ(P′J , P−J)(j)Pj ϕ(P)(j).

Given a problem (�, q; P) and an assignment µ, suppose students in a nonempty set

J ⊂ I are removed together with their assigned seats. For each s ∈ S, let q′s ≡ qs − |{i ∈

J : µ(i) = s}|. Let I′ ≡ I\J and S′ ≡ {s ∈ S : q′s > 0}. Then the removal induces a unique

sub-priority-structure (�′, q′) and a subproblem (�′, q′; P′−J), where�′ (P′−J , resp.) is the

restriction of � (P, resp.) to students in I′ and schools in S′, and q′ is (q′s)s∈S′ .

6For notational simplicity, we suppress I and S in the description of a problem.
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2.2 Deferred acceptance algorithm

The (student-proposing) deferred acceptance algorithm (DA) is proposed in the classic

work of Gale and Shapley (1962). Through DA, each priority structure (�, q) induces an

allocation mechanism which we denote by DA�,q. For each preference profile P, DA�,q

operates as follows:

Step 1. Each student applies to her favorite school. Each school tentatively accepts the

best students according to its priority list up to its quota and rejects the rest.

Step k, k ≥ 2. Each student rejected in the previous step applies to her next best school.

Each school tentatively accepts the best students according to its priority list up to

its quota and rejects the rest, among both new applicants and previously accepted

students.

The algorithm stops when no student is rejected. DA assigns each student the last

school that accepted her during the algorithm. Gale and Shapley (1962) show that DA

produces the student-optimal stable assignment at (�, q; P), which Pareto dominates any

other stable assignment for the students. Also, due to Dubins and Freedman (1981) and

Roth (1982), DA�,q is strategy-proof. However, DA�,q need not be Pareto efficient.

3 Top fair set

3.1 Definition

A set of students is called a top fair set if when all students apply to their favorite schools

and all schools accept the best applicants up to their quotas, students in the set are always
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accepted, regardless of other students’ preferences. Let rs(i) ≡ |{j ∈ I : j �s i}| + 1

denote the rank of student i at �s.

Definition 1. Fix a school choice problem (�, q; P). A top fair set (TFS) is a nonempty set of

students T ⊂ I such that for every student i ∈ T and her favorite school s ∈ S ∪ {∅},

rs(i)− |{i′ ∈ T : i′ �s i, i′ favors s′ 6= s}| ≤ qs.

The inequality ensures that for each school s, students in T who favor s are all ranked

among top-qs by s, when students in T who favor other schools are excluded.7 That is,

the simultaneous assignments of students in T justify the fairness of each other. Equiva-

lently, if T is a TFS, then after assigning to students in T, for each i ∈ T and her favorite

school s, unassigned students who have higher priorities than i at s do not outnumber the

remaining seats at s.8

Example 1 below presents an illustration of TFS, and Example 2 below presents a sim-

ple school choice problem at which no TFS exists, although its DA assignment is Pareto

efficient.

Example 1. Suppose I = {1, 2, 3, 4, 5}, S = {s1, s2, s3}, qs1 = 2, and qs2 = qs3 = 3. The

priority lists are described in the table below. Let P be any preference profile such that

student 1’s favorite school is s2, student 2’s favorite is s3, and students 3, 4, 5’s favorite is
7To define TFS in the more general setting where each school s is associated with a choice function

Cs : 2I → 2I as in Kojima and Manea (2010), this inequality should be replaced with i ∈ Cs({i′ ∈ T : i′ favors
s} ∪ (I\T)), i.e., i will be accepted by s even if all students not in T also apply to s.

8That is, we can replace the inequality in the definition of TFS with |{j /∈ T : j �s i}| ≤ qs − |{i′ ∈ T : i′

favors s}|.
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s1; students’ favorite schools are described by the bottom row of the table.

�s1 �s2 �s3

1 2 5

2 5 3

3 3 1

4 4 4

5 1 2

3, 4, 5 1 2

The problem (�, q; P) has three TFS: T1 = {1, 2, 3}, T2 = {1, 2, 4}, and T3 = {1, 2, 3, 4}.

To see this, take T2 for example. It is easy to see that when students in T2 apply to their

respective favorite schools, no matter which schools students 3 and 5 apply to, students

in T2 will always be accepted.

Example 2. Suppose I = {1, 2, 3}, S = {s1, s2}, and qs1 = qs2 = 1. The priority lists are

described in the left table below. Let P be any preference profile such that student 1’s

favorite school is s2 and students 2 and 3’s favorite is s1; students’ favorite schools are

described by the bottom row of the left table.

�s1 �s2

1 3

2 1

3 2

2, 3 1

P1 P2 P3

s2 s1 s1

∅ s2 s2

The problem (�, q; P) has no TFS. This is because since s2 has only one seat, for stu-
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dent 1 to be in any TFS T, student 3–who can exclude student 1 from s2–must also be in T.

Likewise, for student 3 to be in T, so must student 1. However, assigning to both student

1 and student 3 will be excluded by student 2 at s1. As a result, even for preference profile

P at which DA�,q(P) is Pareto efficient (for example, P as described by the right table

above), (�, q; P) need not have TFS.

Next, we present some structural properties of TFS.

Proposition 1. Fix a school choice problem (�, q; P). The following properties hold:

(i) If both T and T′ are TFS, then so is T ∪ T′;

(ii) Suppose T is a TFS and T′ ( T. If every student in T′ is removed with a seat from her favorite

school, then T\T′ is still a TFS at the remaining subproblem.

Due to part (i), if any TFS exists, then there must be a maximal TFS which is the

union of all TFS. Part (ii) is straightforward from the definition of TFS; it reveals a form of

consistency in how TFS makes assignments: the removal of a subset of students in T with

their assignments won’t affect the assignments of the rest of the students in T.

3.2 Finding TFS

For any school choice problem (�, q; P), an (iterative) elimination process operates as

follows:

Step 1. Let each student apply to her favorite school. Then let each school select the

best applicants according to its priority list, up to its quota. Students who are not

accepted by her favorite school are eliminated.
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Step t, t ≥ 2. For each s ∈ S, let every student who hasn’t been eliminated still apply

to her favorite school, and let all students who have ever been eliminated (by any

school in any step before Step-t) apply to s. Then let s select the best applicants

according to its priority list, up to its quota. Students who are not accepted by s are

eliminated.

This process stops at the step when no new students are eliminated. For any given

school choice problem, it always finds the maximal TFS, if any TFS exists.

Proposition 2. The set of students who survive the elimination process, if nonempty, is the max-

imal TFS. If it is empty, then no TFS exists.

To prove Proposition 2, we show by induction, that students eliminated in any step

of the elimination process cannot be in any TFS. Let’s illustrate the elimination process

with previous examples.

Example 3. In Example 1, only student 5 is rejected (by s1) in Step-1 of the elimination

process. Therefore, in Step-2, student 5 applies to each school to see whether any accepted

student can be newly eliminated; the answer is no and the elimination process stops. The

set of students who survive is {1, 2, 3, 4}.

In Example 2, only student 3 is rejected (by s1) in Step-1 of the elimination process.

In Step-2, student 3 applies to each school, and student 1 is eliminated from s2. In Step-3,

all the eliminated students, i.e., student 3 and 1, apply to each school, and student 2 is

now eliminated from s1. By now, all students have been eliminated and the elimination

process stops.
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4 Main result

Fix any given priority structure (�, q), we define the TFS�,q algorithm. For each prefer-

ence profile P of students, TFS�,q operates as follows:

Step 1. If the problem (�, q; P) has no TFS, stop. Otherwise, find a TFS, assign each

student in it a seat at her favorite school, and then remove these students with their

assigned seats.

Step t, t ≥ 2. Consider the subproblem induced by the removal in previous steps. If it has

no TFS, stop. Otherwise, find a TFS, assign each student in it a seat at her favorite

school, and then remove these students with their assigned seats.

We did not specify how to select a TFS when multiple exist in some step of the algo-

rithm. As our next result shows, due to Proposition 1, such selection does not affect the

outcome of the algorithm. A default option is to choose the maximal TFS in each step of

TFS�,q(P), which can be found through the elimination process (Proposition 2).

Proposition 3. For any school choice problem, the outcome of the TFS algorithm is independent

of the choice of TFS in each step of the algorithm.

Also, the outcome of the TFS algorithm, TFS�,q(P), may only be a partial assignment,

because the algorithm stops whenever TFS does not exist.

Definition 2. A priority structure (�, q) is TFS-solvable if at any P, TFS�,q produces a com-

plete assignment.

Our main result shows the equivalence between TFS-solvability and the efficiency of

the DA mechanism.
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Theorem 1. A priority structure (�, q) is TFS-solvable if and only if DA�,q is a Pareto efficient

mechanism. Moreover, if (�, q) is TFS-solvable, then TFS�,q(P) = DA�,q(P), ∀P.

Therefore, the assignment of any Pareto efficient DA mechanism can always be de-

composed into a sequence of TFS assignments. In this sense, Pareto efficient DA mecha-

nisms share a similar iterative removal structure with other known group strategy-proof

and Pareto efficient mechanisms.9

The set of priority structures that induce Pareto efficient DA mechanisms have been

characterized by Ergin (2002)’s acyclicity condition.10 A priority structure (�, q) is acyclic

if there do not exist distinct schools s1, s2 and distinct students i, j, k such that: (i) i �s1

j �s1 k �s2 i; and (ii) there exist disjoint sets of students Is1 , Is2 ⊂ I\{i, j, k} such that

Is1 �s1 j, Is2 �s2 i, |Is1 | = qs1 − 1, and |Is2 | = qs2 − 1. For any (�, q), DA�,q is consistent if

for any P, after removing students in any set J ⊂ I with their assignments at DA�,q(P),

at the subproblem (�′, q′; P′−J) induced by the removal, DA�
′,q′(P′−J) assigns students in

I\J the same assignments as in DA�,q(P).

Theorem 2 (Ergin, 2002). For any (�, q), the following are equivalent:

(i) DA�,q is Pareto efficient;

(ii) DA�,q is group strategy-proof;

(iii) DA�,q is consistent;

(iv) (�, q) is acyclic.

9When qs = 1, ∀s, these mechanisms have been characterized by Pycia and Ünver (2017) as trading
cycles mechanisms, which generalize Pápai (2000)’s hierarchical exchange rules by introducing a new form
of ownership called brokerage. Pycia and Ünver (2011) extend trading cycles mechanisms to school choice
with general capacities.

10Ergin (2002) also provides a characterization of acyclicity by showing that the priority lists of any pair
of schools should be similar in positions lower than the sum of their quotas.
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The following observation follows immediately from Theorem 1 and Theorem 2.

Corollary 1. A priority structure (�, q) is TFS-solvable if and only if it is acyclic.

Suppose (�, q) is acyclic. From Ergin’s equivalence results, DA�,q (and equivalently,

TFS�,q) is Pareto efficient, group strategy-proof, and consistent.11 We argue that these

properties of DA�,q become more intuitive, when we look at its TFS decomposition. First,

Pareto efficiency and group strategy-proofness are due to assigning students their fa-

vorite schools and the iterative structure in the TFS algorithm, the same reasons that the

TTC-based mechanisms satisfy these properties. Second, consistency is due to part (ii) of

Proposition 1: the removal of a subset of students in T with their assignments won’t affect

the assignments of the rest of the students in T.

The main difficulty in proving Theorem 1 lies in proving the following lemma.

Lemma 1. If DA�,q is Pareto efficient, then for any P, a TFS exists.

To prove this lemma, it is sufficient to show that if DA�,q is Pareto efficient, then at

any P, a nonempty set of students survive the elimination process. The key intuition is

that if any student k is eliminated from school s in the first step and k is able to eliminate

some i accepted by s′ in the second step, then i or any student with lower priority than i

at s′ cannot help eliminate any first-step students accepted by s. This is because otherwise

there will be a rejection cycle in the DA procedure of certain preference profile: s rejects k

and k’s next application to s′ leads to the rejection of some i, whose application to s in turn

excludes some student accepted by s. The existence of such rejection cycle is in conflict

with the efficiency of DA. More generally, if for all 2 ≤ l ≤ L, students eliminated by sl

can help eliminate students at sl−1, then students eliminated by s1 cannot help eliminate

11Kojima and Manea (2010) show that for DA mechanisms under acceptant substitutable priority, Pareto
efficiency, Maskin monotonicity, and group strategy-proofness are equivalent. The equivalence between
these axioms and consistency is extended to acceptant substitutable priority by Klijn (2011).
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students at sL. Therefore, there must be a school whose first-step accepted students all

survive the second-step elimination. By induction, this holds true for all steps.

5 Conclusion

We propose a new concept, top fair set, to identify which students should be assigned

their favorite school. When the priority structure is acyclic, iterative assignment of top

fair sets ensures both Pareto efficiency and group strategy-proofness. Our main result

shows that each Pareto efficient DA mechanism can be decomposed into a sequence of

TFS. If a priority structure is not acyclic, it is not TFS-solvable. We do not yet know how to

properly extend the TFS algorithm to such priority structures. A natural way is to assign

and remove TFS when it exists, and when no TFS exists, assign and remove TTC instead.

However, such an algorithm is not strategy-proof. For the sake of simplicity, we restrict

attention to priority structures that consist of priority lists. When schools have acceptant

substitutable priority, the DA mechanism is well-defined and is still student-optimally

stable. TFS is also well-defined for such priority structures, and it is not difficult to extend

the equivalence between TFS-solvability and the Pareto efficiency of the DA mechanism.

A Appendix

A.1 Proof of Proposition 1

Proof. For part (i), suppose both T and T′ are TFS. For each s that is favored by some

student in T∪ T′, let i ∈ T∪ T′ be the student with the lowest priority at s among students

in T ∪ T′ who favor s. Without loss of generality, assume i ∈ T. Since T is a TFS, |{j /∈ T :
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j �s i}| ≤ qs − |{i′ ∈ T : i′ favors s}|. For each j′ ∈ T′\T who favors s, by assumption,

j′ �s i. Therefore, from T to T ∪ T′, each addition of a student j′ ∈ T′\T who favors s

reduces a student not in T who has higher priority than i at s. As a result, |{j /∈ T ∪ T′ :

j �s i}|+ |{i′ ∈ T ∪ T′ : i′ favors s}| = |{j /∈ T : j �s i}|+ |{i′ ∈ T : i′ favors s}| ≤ qs.

Moreover, this inequality is also satisfied by any other student in T ∪ T′ who favors s,

because by assumption such a student is ranked higher than i at s.

For part (ii), suppose students in T′ are removed together with their TFS assignments.

Then for each school s such that a number of seats of it are removed, in the subproblem,

|{i′ ∈ T : i′ favors s}| is reduced by the same number. Therefore, in this subproblem, for

each i ∈ T\T′ who favors this school s, |{j /∈ T : j �s i}| ≤ q′s − |{i′ ∈ T\T′ : i′ favors s}|

still holds.

A.2 Proof of Proposition 2

Proof. We first introduce some notations. For each school s, denote by Rt(s) the set of

students who favor s and are accepted by s in the first t− 1 steps, but are (newly) elim-

inated by it in Step-t of the elimination process. Likewise, denote by At(s) the set of

students who favor s and are accepted by s in the first t steps. Then Rt ≡ ∪s∈SRt(s) is the

set of all newly eliminated students in Step-t, and At ≡ ∪s∈S At(s) is the set of students

who survive the first t steps of elimination. By definition, At = I\(R1 ∪ · · · ∪ Rt). If the

elimination process stops at Step-t̄, for all t ≥ t̄ and all s, let At(s) = At̄(s) and Rt(s) = ∅.

Suppose a nonempty set of students who survive the elimination process; denote it

by M . Then M is a TFS, as no matter what preferences students in I\M have, students in

M are always accepted by their favorite schools. We next show that M is the maximal TFS.

Fix an arbitrary TFS T, we only need to show that, by induction, it contains no student
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who has ever been eliminated along the process.

Let us start with R1 ∩ T = ∅. Suppose not, then there is a student i eliminated

from her favorite school s in Step-1 and i ∈ T. Note that A1(s) �s i and |A1(s)| = qs.

Since every student in A1(s) either belongs to {j /∈ T : j �s i} or {i′ ∈ T : i′ favors s},

|{j /∈ T : j �s i}|+ |{i′ ∈ T : i′ favors s}| ≥ qs + 1. A contradiction to i ∈ T.

Suppose for some natural number k < t̄, Rt ∩ T = ∅ for all 1 ≤ t ≤ k. We now prove

Rk+1 ∩ T = ∅. If not, then there exists a student i ∈ Rk+1(s) ∩ T, where s is her favorite

school. Then i is not selected by her favorite school s among students in Ak(s)∪ R1 ∪ · · · ∪

Rk. There are at least qs − |Ak+1(s)| students in R1 ∪ · · · ∪ Rk who have higher priority

than i at s. Due to the induction hypothesis, these students in R1 ∪ · · · ∪ Rk belong to

{j /∈ T : j �s i}. It is also clear that Ak+1(s) �s i. As a result, every student in Ak+1(s)

either belongs to {j /∈ T : j �s i} or {i′ ∈ T : i′ favors s}. Therefore, |{j /∈ T : j �s

i}|+ |{i′ ∈ T : i′ favors s}| ≥ qs + 1. A contradiction to i ∈ T.

A.3 Proof of Proposition 3

Proof. Fix a school choice problem (�, q; P). Let {M1, M2, . . . , Mn} be the sequence of

maximal top fair sets in the TFS algorithm, and denote by µ the outcome (a partial as-

signment or assignment). Fix another arbitrary TFS process, denoted the sequence of

top fair sets by {T1, T2, . . . , Tm} and the final outcome by ν. Our goal is to show that

∪m
k=1Tk = ∪n

l=1Ml, and moreover µ = ν when restricted to this union of subsets. For

every subset of students J ⊂ I, we write µ|J = ν|J if for every j ∈ J, µ(j) = ν(j).

We proceed to prove this result into the following three steps.

Step I. M1 ⊂ ∪m
k=1Tk, and ν|M1 = µ|M1 .
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The statement holds if M1 = T1. In fact, it is clear that T1 ⊂ M1 because M1 is the

maximal TFS in the original problem. Note that µ|T1 = ν|T1 as every student in T1 gets

her favorite school. Suppose that T1 ( M1. In the remaining subproblem after removing

T1, both T2 and M1\T1 are TFS. Therefore, for every student j ∈ (M1\T1) ∩ T2 = M1 ∩

T2, her favorite school in the original problem is still guaranteed, as a result, µ|M1∩T2 =

ν|M1∩T2 . Similarly, we can show by induction that, for every k = 2, . . . , m, if M1\(T1 ∪ T2 ∪

· · · ∪ Tk) 6= ∅, it is a TFS in the remaining subproblem when T1, T2, . . . , Tk are removed

sequentially, and then µ|M1∩Tk+1 = ν|M1∩Tk+1 . Because the TFS procedure {T1, T2, . . . , Tm}

terminates when there is no TFS, it must be the case that M1\(T1 ∪ T2 ∪ · · · ∪ Tm) = ∅.

Therefore, M1 ⊂ ∪m
k=1Tk and then ν|M1 = µ|M1 .

Step II. The sequence of subsets, {M1, T2\M1, T3\M1, . . . , Tm\M1}, consists of top fair sets for

a TFS procedure in the original problem (if for any k, Tk\M1 = ∅, just drop it from the sequence).

Moreover, this TFS procedure yields the outcome ν.

The statement is true if T1 = M1. Suppose that T1 ( M1. From Step I, every student

in the maximal TFS M1 is assigned her favorite school and leaves the market. If T2\M1

is nonempty, it is a TFS in the remaining subproblem after removing M1. In fact, the

removal of M1 can be decomposed into two sub-steps, removing T1 first, then removing

M1\T1, as a result, T2\(M1\T1) = T2\M1 remains a TFS in the remaining subproblem

after removing M1. Meanwhile, students in T2\M1 still get their favorite schools in the

remaining subproblem after the removal of T1. Similarly, one can show by induction that

{M1, T2\M1, T3\M1, . . . , Tm\M1} (if for any k, Tk\M1 = ∅, just drop it from the sequence)

consists of a sequence of top fair sets for a TFS procedure. Moreover, every student in

Tk+1\M1 is assigned her favorite school as in ν in the remaining subproblem after the

removal of T1, T2, . . . , Tk. Therefore, the TFS procedure {M1, T2\M1, . . . , Tk\M1} yields

the same outcome ν.
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Step III. We have proved in Step I that M1 ⊂ ∪m
k=1Tk, and ν|M1 = µ|M1 . Remove

M1 and their assignments as in µ from the market. In the remaining subproblem, it

is clear that {M2, . . . , Ml} is the TFS procedure in which the maximal TFS is removed

at each step, and each student is assigned the same school as in µ. From Step II,

{T2\M1, T3\M1, . . . , Tm\M1} (if some subset is empty, drop it) is another TFS procedure

in this subproblem, and each student is assigned the same school as in ν. It is clear that,

T2\M1 ⊂ M2, thus T2 ⊂ M1 ∪ M2, because M2 is the maximal TFS in this subproblem.

Next, apply the argument in Step I for these two TFS procedures in this subproblem,

M2 ⊂ ∪m
k=2(Tk\M1), thus M2 ⊂ ∪m

k=1Tk, and ν|M2 = µ|M2 . Finally, this argument can be

applied by induction to verify that Ml ⊂ ∪m
k=lTk, and ν|Ml = µ|Ml for all l = 1, . . . , n. We

therefore proved ∪m
k=1Tk = ∪n

l=1Ml, and µ and ν coincide when restricted on this set.

A.4 Proof of Lemma 1

Proof. Suppose DA�,q is Pareto efficient and P is a given preference profile. Consider the

elimination process associated with the problem (�, q; P). Recall that from the proof of

Proposition 2, Rt(s) denotes the set of students who favor s but are (newly) eliminated by

it in Step-t of the elimination process, and At(s) denotes the set of students who favor s

and are (still) accepted by s in Step-t. Also, Rt ≡ ∪s∈SRt(s) and At ≡ ∪s∈S At(s).

Claim 1. Suppose DA�,q is Pareto efficient and s1, s2, . . . , sL is a collection of schools. If for every

2 ≤ l ≤ L, A1(sl−1) �sl−1 R1(sl) does not hold, then A1(sL) �sL R1(s1).

When L = 2, this claim simply says that if some student eliminated at s2 in the first

step is able to eliminate first-step accepted students at s1 in the second step, i.e., if not

A1(s1) �s1 R1(s2), then students in R1(s1) cannot eliminate any student in A1(s2), i.e.,

A1(s2) �s2 R1(s1).
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Proof. Assume for every 2 ≤ l ≤ L, A1(sl−1) �sl−1 R1(sl) does not hold. Suppose instead

A1(sL) �sL R1(s1) also does not hold. Then for each 2 ≤ l ≤ L, there exists kl ∈ R1(sl)

and il−1 ∈ A1(sl−1) such that kl �sl−1 il−1. In addition, there exists k1 ∈ R1(s1) and iL ∈

A1(sL) such that k1 �sL iL. Construct a preference profile P′ such that for all kl, 2 ≤ l ≤ L,

her new preference is P′kl
: sl, sl−1, ∅, and P′k1

: s1, sL, ∅; for all j ∈ A1(s) for some s (except

students il, 1 ≤ l ≤ L), her new preference is P′j : s, ∅; for all the il’s and all other students,

assume they find all schools unacceptable.

We will see that DA(�, q; P′) is not Pareto efficient, which contradicts with the as-

sumption that DA�,q is Pareto efficient. In the DA procedure of (�, q; P′), sL accepts

students in A1(sL) and rejects kL. After that, kL applies to sL−1 and sL−1 rejects kL−1.

Eventually, k1 applies to sL and since k1 �sL iL for some iL ∈ A1(sL), sL will reject some

student in A1(sL). After that, DA stops. The DA assignment is not Pareto efficient because

letting students k1, . . . , kL exchange their assignments leads to a Pareto improvement.

Claim 2. Suppose DA�,q is Pareto efficient. For all preference profile P, A2 6= ∅.

Proof. It is sufficient to show that for some school s with A1(s) 6= ∅, R2(s) = ∅. Suppose

not. Then for every s0 such that A1(s0) 6= ∅, there exists s1 such that A1(s0) �s0 R1(s1)

fails to hold. Accordingly, there exists s2 such that A1(s1) �s1 R1(s2) fails to hold, and due

to Claim 1, s2 6= s0. By induction and iteratively applying Claim 1, for any L ≥ 1, there ex-

ist heterogeneous schools s1, s2, . . . , sL such that for each 1 ≤ l ≤ L, A1(sl−1) �sl−1 R1(sl)

fails to hold. However, since there are only finitely many schools, this is not possible.

Claim 3. Suppose DA�,q is Pareto efficient and t ≥ 2. If for all preference profile P, At 6= ∅,

then for all P, At+1 6= ∅.

Proof. Suppose for a given t, for all preference profile P, during the elimination process of

(�, q; P), At 6= ∅. For any given P, we can reduce its (t+ 1)-th step elimination to be the
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t-th step elimination of a modified preference profile.

Consider students in R2 at the elimination process under (�, q; P). If i ∈ R2(s0) for

any s0, then due to our arguments in proving Claim 2, there exist heterogeneous schools

s1, s2, . . . , sL such that there exists k ∈ R1(s1) satisfying k �s0 i, and for each 1 ≤ l ≤

L, A1(sl−1) �sl−1 R1(sl) fails to hold, while for all s, A1(sL) �sL R1(s). That is, no student

in A1(sL) will be eliminated in the second step of elimination; R2(sL) = ∅.

In addition, if i ∈ R2(s0) and there exists k ∈ R1(s1) such that k �s0 i, then A1(s1) �s1

i. This is because otherwise due to the same argument as in the proof of Claim 1, DA

will be inefficient: under certain preferences, during DA, k is rejected from s1, and then

she applies to s0, causing i to be rejected from s0, and i then applies to s1, causing some

student in A1(s1) to be rejected.

By induction, A1(sL) �sL i. Then we know that if any i ∈ R2(s0) lists sL as her

favorite school, then i will be rejected in the first step of the elimination process. For

every i ∈ R2, we can find such a school sL and modify Pi such that i lists sL as her favorite

school. Denote the new preference profile as P′ and the step-t̃ eliminated students under

(�, q; P′) as R′t. Then R′1 = R2 ∪ R1, because all students in R2 will now be eliminated in

step-1 under P′.

As a result, for any t̃ ≥ 2, R′t̃(s) = Rt̃+1(s) and A′t̃(s) = At̃+1(s), ∀s. By assumption,

for all preference profiles, At 6= ∅. Apply this to P′. Then A′t = At+1 6= ∅.

The proof of Lemma 1 then follows directly from Claim 2 and 3 by induction on t.
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A.5 Proof of Theorem 1

Proof. It is easy to see that if (�, q) is TFS-solvable, then for any P, TFS�,q(P) is always

stable and Pareto efficient at (�, q; P). We also know that DA�,q(P) is always optimally

stable at (�, q; P). Therefore, if (�, q) is TFS-solvable, then TFS�,q(P) = DA�,q(P), ∀P,

and DA�,q is Pareto efficient.

Therefore, we only need to show that if DA�,q is Pareto efficient, then (�, q) is TFS-

solvable. For necessity, suppose DA�,q is efficient. Fix any preference profile P. Due to

Lemma 1, a TFS exists. Then TFS�,q can find a TFS T, assign students in it with seats at

their favorite schools, and then remove them.

Let (�′, q′) be the sub-priority-structure induced by the assignment and removal of

T. Then DA�
′,q′ is also Pareto efficient mechanism. This is because students in T must

have been assigned and removed with their assignment at DA(�, q; P). Due to the consis-

tency of efficient DA mechanisms shown by Theorem 1 of Ergin (2002), at the remaining

subproblem, DA produces the same Pareto efficient assignment for students in I\T as

DA(�, q; P). Furthermore, this is true regardless of the preferences of students in I\T.

Therefore, DA�
′,q′ is efficient.

By induction, after the removal of any TFS, we can find another TFS at the remaining

subproblem. Such iterative removal of TFS stops only when all students are removed.

Therefore, DA�,q is Pareto efficient implies that (�, q) is TFS-solvable.
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